首页 > 最新文献

Journal of Experimental & Clinical Cancer Research最新文献

英文 中文
Rewiring tumor cytokine networks to enhance immune checkpoint blockade: mechanisms, engineering, and clinical translation. 重组肿瘤细胞因子网络以增强免疫检查点阻断:机制、工程和临床翻译。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-07 DOI: 10.1186/s13046-026-03656-z
Xiaodong Wang, Junjie Wang, Qianqian Wang, Gouping Ding, Yiping Huang, Yeqian Feng
{"title":"Rewiring tumor cytokine networks to enhance immune checkpoint blockade: mechanisms, engineering, and clinical translation.","authors":"Xiaodong Wang, Junjie Wang, Qianqian Wang, Gouping Ding, Yiping Huang, Yeqian Feng","doi":"10.1186/s13046-026-03656-z","DOIUrl":"https://doi.org/10.1186/s13046-026-03656-z","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: ZEB1-mediated biogenesis of circnipbl sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. 更正:zeb1介导的circnipl的生物发生通过Wnt/β-catenin途径维持膀胱癌的转移。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-06 DOI: 10.1186/s13046-025-03615-0
Yao Kong, Yuanlong Li, Mingjie An, Yuming Luo, Hanhao Zheng, Yan Lin, Jiancheng Chen, Jin Yang, Libo Liu, Baoming Luo, Jian Huang, Tianxin Lin, Changhao Chan
{"title":"Correction: ZEB1-mediated biogenesis of circnipbl sustains the metastasis of bladder cancer via Wnt/β-catenin pathway.","authors":"Yao Kong, Yuanlong Li, Mingjie An, Yuming Luo, Hanhao Zheng, Yan Lin, Jiancheng Chen, Jin Yang, Libo Liu, Baoming Luo, Jian Huang, Tianxin Lin, Changhao Chan","doi":"10.1186/s13046-025-03615-0","DOIUrl":"10.1186/s13046-025-03615-0","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"45 1","pages":"39"},"PeriodicalIF":12.8,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12879321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146133307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GSPT1-specific protein degradation is effective in preclinical models of chemoresistant MYCN-amplified neuroblastoma. gspt1特异性蛋白降解在耐药mycn扩增神经母细胞瘤的临床前模型中是有效的。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-06 DOI: 10.1186/s13046-026-03647-0
Aleksandra Adamska, Hanna Chahin, Erick Andrés Muciño-Olmos, Javanshir Esfandyari, Kristina Aaltonen, Sofia Granados-Aparici, Joachim Tetteh Siaw, Katarzyna Radke, Chiara Lago, Paweł Pasikowski, Roman Pluta, Anna Sawicka, Przemysław Glaza, David Gisselsson, Samuel Navarro, Rosa Noguera, Joanna Majkut, Paweł Dobrzański, Sylvain Cottens, Michał J Walczak, Daniel Bexell
{"title":"GSPT1-specific protein degradation is effective in preclinical models of chemoresistant MYCN-amplified neuroblastoma.","authors":"Aleksandra Adamska, Hanna Chahin, Erick Andrés Muciño-Olmos, Javanshir Esfandyari, Kristina Aaltonen, Sofia Granados-Aparici, Joachim Tetteh Siaw, Katarzyna Radke, Chiara Lago, Paweł Pasikowski, Roman Pluta, Anna Sawicka, Przemysław Glaza, David Gisselsson, Samuel Navarro, Rosa Noguera, Joanna Majkut, Paweł Dobrzański, Sylvain Cottens, Michał J Walczak, Daniel Bexell","doi":"10.1186/s13046-026-03647-0","DOIUrl":"https://doi.org/10.1186/s13046-026-03647-0","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146133092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KNTC1 initiates a KNTC1/E2F8/MYC positive feedback loop to facilitate tumorigenesis and enhance chemoresistance in bladder cancer. KNTC1启动KNTC1/E2F8/MYC正反馈回路,促进膀胱癌的肿瘤发生并增强化疗耐药。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-04 DOI: 10.1186/s13046-026-03651-4
Kailai Chen, Hecheng Su, Feng Pei, Xi Chen, Meiqi Xu, Fang Chai, Yakun Luo
{"title":"KNTC1 initiates a KNTC1/E2F8/MYC positive feedback loop to facilitate tumorigenesis and enhance chemoresistance in bladder cancer.","authors":"Kailai Chen, Hecheng Su, Feng Pei, Xi Chen, Meiqi Xu, Fang Chai, Yakun Luo","doi":"10.1186/s13046-026-03651-4","DOIUrl":"10.1186/s13046-026-03651-4","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":"38"},"PeriodicalIF":12.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12879452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146120970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LINC01963 promotes pancreatic ductal adenocarcinoma proliferation via METTL3/IGF2BP2 axis-mediated m⁶A modification of c-Myc. LINC01963通过METTL3/IGF2BP2轴介导的c-Myc的m 26 A修饰促进胰腺导管腺癌增殖。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-04 DOI: 10.1186/s13046-026-03650-5
Qixian Liu, Ruiyu Li, Bohan Liu, Hangqi Liu, Xuqing Shi, Xianglin Yin, Xinping Ju, Sichong Zhang, Jun Wang, Yuhan Zhang, Xiaoding Liu, Dongmei Li, Longyun Chen, Yamei Niu, Huanwen Wu, Zhiyong Liang
{"title":"LINC01963 promotes pancreatic ductal adenocarcinoma proliferation via METTL3/IGF2BP2 axis-mediated m⁶A modification of c-Myc.","authors":"Qixian Liu, Ruiyu Li, Bohan Liu, Hangqi Liu, Xuqing Shi, Xianglin Yin, Xinping Ju, Sichong Zhang, Jun Wang, Yuhan Zhang, Xiaoding Liu, Dongmei Li, Longyun Chen, Yamei Niu, Huanwen Wu, Zhiyong Liang","doi":"10.1186/s13046-026-03650-5","DOIUrl":"https://doi.org/10.1186/s13046-026-03650-5","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146121024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AKR1B10 reprograms neutrophils by histone lactylation to foster immune evasion in KRASG12C mutation colorectal cancer liver metastasis. AKR1B10通过组蛋白乳酸化重编程中性粒细胞,促进KRASG12C突变结直肠癌肝转移的免疫逃避。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-03 DOI: 10.1186/s13046-026-03653-2
Weiwei Li, Wenkang Yuan, Zihao Du, Xiangyu Wang, Daoyue Wang, Songlin Xing, Tingting Shen, Canliang Lu, Jiale Chen, Anhai Yu, Xinyu Jiang, Shiwei Zhang, Shuhao Zheng, Xiaowen Feng, Tianqi Wang, Jieliang Zuo, Jinhong Chen, Chao Zhang, Xuefu Wang, Chong Zhang

Background: The KRASG12C mutation is one of the special mutation types in patients with colorectal cancer liver metastasis (CRLM). Although several small molecule inhibitors specifically targeting KRASG12C mutation have been developed, they have only shown limited clinical benefits for CRLM patients. Thus, alternative approaches are still needed.

Methods: We screened out the differentially expressed gene Aldo-keto reductase family 1 member B10 (AKR1B10) between the KRASG12C mutation and wild-type CRLM through RNA sequencing, and characterized the tumor microenvironment (TME) changes of the KRASG12C mutation CRLM using multi-omics analysis. The role of AKR1B10 in the TME and its progression of KRASG12C mutation CRLM was confirmed by in vitro and in vivo experiments, and the molecular mechanism of lactate on neutrophils reprogramming was detected by immunofluorescence, western blot and Chip-qPCR.

Results: AKR1B10 was highly expressed in the KRASG12C mutation CRLM and was associated with a poor prognosis. Mechanistically, AKR1B10 promotes the recruitment of neutrophils in the TME by CXCL8/CXCR2 pathway. Meanwhile, AKR1B10 could promote the production of lactate by regulating crucial glycolytic enzymes. The increased lactate accumulation in the TME promoted histone lactylation of neutrophils, which induced PD-L1 transcription and prompted the reprogramming of neutrophils to an immunosuppressive phenotype.

Conclusion: AKR1B10 facilitated immune evasion of KRASG12C mutation CRLM by recruiting and reprogramming neutrophils to remodel the immunosuppressive TME, providing a potential therapeutic target for KRASG12C mutation CRLM patients.

背景:KRASG12C突变是结直肠癌肝转移(CRLM)患者的特殊突变类型之一。虽然已经开发了几种专门针对KRASG12C突变的小分子抑制剂,但它们对CRLM患者的临床益处有限。因此,仍然需要替代方法。方法:通过RNA测序筛选KRASG12C突变与野生型CRLM之间的差异表达基因Aldo-keto还原酶家族1成员B10 (AKR1B10),并利用多组学分析表征KRASG12C突变CRLM的肿瘤微环境(TME)变化。通过体外和体内实验证实AKR1B10在KRASG12C突变CRLM的TME及其进展中的作用,并通过免疫荧光、western blot和Chip-qPCR检测乳酸对中性粒细胞重编程的分子机制。结果:AKR1B10在KRASG12C突变的CRLM中高表达,与预后不良相关。在机制上,AKR1B10通过CXCL8/CXCR2途径促进TME中中性粒细胞的募集。同时,AKR1B10可以通过调节关键的糖酵解酶促进乳酸的产生。TME中乳酸积累的增加促进了中性粒细胞的组蛋白乳酸化,从而诱导PD-L1转录,并促使中性粒细胞重编程为免疫抑制表型。结论:AKR1B10通过募集和重编程中性粒细胞重塑免疫抑制的TME,促进KRASG12C突变CRLM患者的免疫逃避,为KRASG12C突变CRLM患者提供了潜在的治疗靶点。
{"title":"AKR1B10 reprograms neutrophils by histone lactylation to foster immune evasion in KRAS<sup>G12C</sup> mutation colorectal cancer liver metastasis.","authors":"Weiwei Li, Wenkang Yuan, Zihao Du, Xiangyu Wang, Daoyue Wang, Songlin Xing, Tingting Shen, Canliang Lu, Jiale Chen, Anhai Yu, Xinyu Jiang, Shiwei Zhang, Shuhao Zheng, Xiaowen Feng, Tianqi Wang, Jieliang Zuo, Jinhong Chen, Chao Zhang, Xuefu Wang, Chong Zhang","doi":"10.1186/s13046-026-03653-2","DOIUrl":"https://doi.org/10.1186/s13046-026-03653-2","url":null,"abstract":"<p><strong>Background: </strong>The KRAS<sup>G12C</sup> mutation is one of the special mutation types in patients with colorectal cancer liver metastasis (CRLM). Although several small molecule inhibitors specifically targeting KRAS<sup>G12C</sup> mutation have been developed, they have only shown limited clinical benefits for CRLM patients. Thus, alternative approaches are still needed.</p><p><strong>Methods: </strong>We screened out the differentially expressed gene Aldo-keto reductase family 1 member B10 (AKR1B10) between the KRAS<sup>G12C</sup> mutation and wild-type CRLM through RNA sequencing, and characterized the tumor microenvironment (TME) changes of the KRAS<sup>G12C</sup> mutation CRLM using multi-omics analysis. The role of AKR1B10 in the TME and its progression of KRAS<sup>G12C</sup> mutation CRLM was confirmed by in vitro and in vivo experiments, and the molecular mechanism of lactate on neutrophils reprogramming was detected by immunofluorescence, western blot and Chip-qPCR.</p><p><strong>Results: </strong>AKR1B10 was highly expressed in the KRAS<sup>G12C</sup> mutation CRLM and was associated with a poor prognosis. Mechanistically, AKR1B10 promotes the recruitment of neutrophils in the TME by CXCL8/CXCR2 pathway. Meanwhile, AKR1B10 could promote the production of lactate by regulating crucial glycolytic enzymes. The increased lactate accumulation in the TME promoted histone lactylation of neutrophils, which induced PD-L1 transcription and prompted the reprogramming of neutrophils to an immunosuppressive phenotype.</p><p><strong>Conclusion: </strong>AKR1B10 facilitated immune evasion of KRAS<sup>G12C</sup> mutation CRLM by recruiting and reprogramming neutrophils to remodel the immunosuppressive TME, providing a potential therapeutic target for KRAS<sup>G12C</sup> mutation CRLM patients.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146108225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic synergies that overcome carboplatin resistance in triple-negative breast cancer. 克服三阴性乳腺癌卡铂耐药的治疗协同作用。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-02-03 DOI: 10.1186/s13046-025-03636-9
Julia E Altman, Aaron Valentine, Nina Dashti-Gibson, Emily K Zboril, David C Boyd, Rachel K Myrick, Amy L Olex, Mikhail G Dozmorov, J Chuck Harrell

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapeutic options, where platinum-based chemotherapy such as carboplatin serves as a cornerstone of treatment. Despite initial responses, the rapid emergence of acquired resistance remains a major clinical barrier. Understanding the molecular adaptations that drive platinum resistance is essential to develop strategies to restore sensitivity and identify alternative vulnerabilities.

Methods: We generated four isogenic patient-derived xenograft (PDX) pairs (WHIM30, BCM‑2147, BCM‑3887, BCM‑7482) through serial carboplatin exposure to model acquired resistance in TNBC. Bulk RNA sequencing, immunohistochemistry, and histopathological analyses were performed to define transcriptomic and phenotypic changes associated with resistance. Synergistic therapeutic combinations were identified using high-throughput drug screening in carboplatin-resistant (CR) PDX-derived models, followed by in vivo validation in NSG mice. Tumor growth and survival were assessed using mixed-effects modeling, two-way ANOVA, and Welch's student t-test.

Results: The resulting isogenic PDX pairs captured both convergent and model-specific adaptations to carboplatin. CR tumors demonstrated heterogeneous activation of DNA damage repair pathways, including restoration of BRCA1-dependent homologous recombination (BCM‑2147, WHIM30) and compensatory upregulation of mismatch repair (BCM‑3887). In the BRCA1-mutant BCM‑7482 model, resistance correlated with HORMAD1 upregulation, suggesting an alternative HRD-associated mechanism. Morphologically, BCM‑7482CR tumors exhibited a significant increase in nuclear size compared to their sensitive counterpart (p < 0.0001). Drug screening identified mTOR pathway inhibition as a recurrent vulnerability across CR models. Sacituzumab govitecan (SG) combined with Everolimus produced robust synergy in vitro and superior tumor control in vivo compared to single agents in both WHIM30CR and BCM‑2147CR. A second combination, Everolimus + Selinexor (KPT‑330), also reduced tumor burden, achieving statistical significance in an expanded WHIM30CR cohort and suppressing metastatic progression in the intrinsically resistant WHIM2 model.

Conclusions: Isogenic PDX models of TNBC provide a powerful platform to define molecular mechanisms of acquired carboplatin resistance and uncover actionable therapeutic strategies. Our findings reveal multiple adaptive routes to platinum resistance, including restoration of homologous recombination and activation of alternative DNA repair programs. Synergistic interactions between SG and mTOR inhibition offer a promising avenue for overcoming resistance, supporting further clinical investigation of these combinations in TNBC.

背景:三阴性乳腺癌(TNBC)是一种侵袭性亚型,缺乏靶向治疗选择,以铂为基础的化疗(如卡铂)是治疗的基石。尽管有初步反应,但获得性耐药的迅速出现仍然是一个主要的临床障碍。了解驱动铂耐药性的分子适应对于制定恢复敏感性和识别其他脆弱性的策略至关重要。方法:我们通过连续卡铂暴露于TNBC模型获得性耐药,生成了四个等基因患者来源的异种移植物(PDX)对(WHIM30, BCM - 2147, BCM - 3887, BCM - 7482)。通过大量RNA测序、免疫组织化学和组织病理学分析来确定与耐药性相关的转录组和表型变化。在卡铂耐药(CR) pdx衍生模型中,通过高通量药物筛选确定了协同治疗组合,然后在NSG小鼠中进行了体内验证。采用混合效应模型、双向方差分析和Welch学生t检验评估肿瘤生长和生存。结果:得到的等基因PDX对捕获了对卡铂的趋同性和模型特异性适应。CR肿瘤表现出DNA损伤修复途径的异质性激活,包括brca1依赖性同源重组的恢复(BCM‑2147,WHIM30)和错配修复的代偿上调(BCM‑3887)。在brca1突变体BCM - 7482模型中,耐药与HORMAD1上调相关,提示另一种与hrd相关的机制。形态学上,BCM - 7482CR肿瘤与敏感的肿瘤相比,其核大小显着增加(p)。结论:TNBC的等基因PDX模型为定义获得性卡铂耐药的分子机制和揭示可行的治疗策略提供了强大的平台。我们的研究结果揭示了铂抗性的多种适应性途径,包括同源重组的恢复和替代DNA修复程序的激活。SG和mTOR抑制之间的协同相互作用为克服耐药提供了一条有希望的途径,支持对这些联合治疗TNBC的进一步临床研究。
{"title":"Therapeutic synergies that overcome carboplatin resistance in triple-negative breast cancer.","authors":"Julia E Altman, Aaron Valentine, Nina Dashti-Gibson, Emily K Zboril, David C Boyd, Rachel K Myrick, Amy L Olex, Mikhail G Dozmorov, J Chuck Harrell","doi":"10.1186/s13046-025-03636-9","DOIUrl":"https://doi.org/10.1186/s13046-025-03636-9","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapeutic options, where platinum-based chemotherapy such as carboplatin serves as a cornerstone of treatment. Despite initial responses, the rapid emergence of acquired resistance remains a major clinical barrier. Understanding the molecular adaptations that drive platinum resistance is essential to develop strategies to restore sensitivity and identify alternative vulnerabilities.</p><p><strong>Methods: </strong>We generated four isogenic patient-derived xenograft (PDX) pairs (WHIM30, BCM‑2147, BCM‑3887, BCM‑7482) through serial carboplatin exposure to model acquired resistance in TNBC. Bulk RNA sequencing, immunohistochemistry, and histopathological analyses were performed to define transcriptomic and phenotypic changes associated with resistance. Synergistic therapeutic combinations were identified using high-throughput drug screening in carboplatin-resistant (CR) PDX-derived models, followed by in vivo validation in NSG mice. Tumor growth and survival were assessed using mixed-effects modeling, two-way ANOVA, and Welch's student t-test.</p><p><strong>Results: </strong>The resulting isogenic PDX pairs captured both convergent and model-specific adaptations to carboplatin. CR tumors demonstrated heterogeneous activation of DNA damage repair pathways, including restoration of BRCA1-dependent homologous recombination (BCM‑2147, WHIM30) and compensatory upregulation of mismatch repair (BCM‑3887). In the BRCA1-mutant BCM‑7482 model, resistance correlated with HORMAD1 upregulation, suggesting an alternative HRD-associated mechanism. Morphologically, BCM‑7482CR tumors exhibited a significant increase in nuclear size compared to their sensitive counterpart (p < 0.0001). Drug screening identified mTOR pathway inhibition as a recurrent vulnerability across CR models. Sacituzumab govitecan (SG) combined with Everolimus produced robust synergy in vitro and superior tumor control in vivo compared to single agents in both WHIM30CR and BCM‑2147CR. A second combination, Everolimus + Selinexor (KPT‑330), also reduced tumor burden, achieving statistical significance in an expanded WHIM30CR cohort and suppressing metastatic progression in the intrinsically resistant WHIM2 model.</p><p><strong>Conclusions: </strong>Isogenic PDX models of TNBC provide a powerful platform to define molecular mechanisms of acquired carboplatin resistance and uncover actionable therapeutic strategies. Our findings reveal multiple adaptive routes to platinum resistance, including restoration of homologous recombination and activation of alternative DNA repair programs. Synergistic interactions between SG and mTOR inhibition offer a promising avenue for overcoming resistance, supporting further clinical investigation of these combinations in TNBC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146108230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SRSF2 mutations drive daunorubicin resistance in acute myeloid leukemia via THBS1 stabilization. SRSF2突变通过THBS1稳定驱动急性髓系白血病柔红霉素耐药。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-01-30 DOI: 10.1186/s13046-026-03649-y
Wu Ye, Xia Wu, Yuqian Tang, Ying Zhang, Yiwen Du, Kun Yang, Yankun Yang, Yuping Gong

Background: Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells, often with a poor prognosis due to therapy resistance. This study investigated the prognostic significance of SRSF2 mutations in AML and their impact on chemotherapeutic drug sensitivity.

Methods: The prognostic value of SRSF2 mutations was analyzed in AML patients. SRSF2-mutant cell models were generated via lentiviral transduction for drug sensitivity testing. Xenograft mice were used to assess daunorubicin (DNR) efficacy. Mechanistic studies included transcriptomics, splicing analysis, mRNA stability, polysome profiling, RNA immunoprecipitation, and metabolic assays to identify targetable resistance pathways.

Results: Clinical analysis revealed that SRSF2 mutations decreased the survival of AML patients. In vitro experiments demonstrated that SRSF2 mutation reduced the sensitivity of AML cells to drugs such as DNR and homoharringtonine but did not affect the response to venetoclax. In mouse models, DNR treatment was effective against wild-type AML but showed significantly reduced efficacy in suppressing tumors and improving survival in SRSF2-mutant AML. Mechanistically, SRSF2 mutation impaired the interaction between the SRSF2 protein and THBS1 mRNA, prolonging the THBS1 mRNA half-life and enhancing its translation efficiency, leading to THBS1 protein accumulation. Additionally, the mutation altered the splicing pattern of ETV7 and upregulated its expression, potentially mediating DNR resistance. Metabolic analysis revealed that mutant cells presented increased spare respiratory capacity, supporting energy demands under stress. Inhibition of the PDGFB pathway (CP-673451) synergistically enhanced the cytotoxic effect of DNR on mutant cells.

Conclusions: SRSF2 mutations promoted DNR resistance through multiple mechanisms, and targeted combination therapy with PDGFB pathway inhibitors may represent a novel strategy to improve therapeutic outcomes in patients with mutations.

背景:急性髓系白血病(AML)是一种侵袭性血液系统恶性肿瘤,其特征是未成熟髓系细胞不受控制的生长,通常由于治疗抵抗而预后不良。本研究探讨了SRSF2突变在AML中的预后意义及其对化疗药物敏感性的影响。方法:分析SRSF2突变在AML患者中的预后价值。通过慢病毒转导制备srsf2突变体细胞模型进行药敏试验。采用异种移植小鼠评价柔红霉素(DNR)的疗效。机制研究包括转录组学、剪接分析、mRNA稳定性、多聚体分析、RNA免疫沉淀和代谢分析,以确定可靶向的耐药途径。结果:临床分析显示,SRSF2突变降低了AML患者的生存。体外实验表明,SRSF2突变降低了AML细胞对DNR和同型哈林丁碱等药物的敏感性,但不影响对venetoclax的反应。在小鼠模型中,DNR治疗对野生型AML有效,但在srsf2突变型AML中抑制肿瘤和提高生存率的效果明显降低。机制上,SRSF2突变破坏了SRSF2蛋白与THBS1 mRNA的相互作用,延长了THBS1 mRNA的半衰期,提高了其翻译效率,导致THBS1蛋白积累。此外,该突变改变了ETV7的剪接模式并上调了其表达,可能介导DNR抗性。代谢分析显示,突变细胞表现出增加的备用呼吸能力,支持压力下的能量需求。抑制PDGFB通路(CP-673451)协同增强DNR对突变细胞的细胞毒作用。结论:SRSF2突变通过多种机制促进DNR耐药,PDGFB通路抑制剂的靶向联合治疗可能是改善突变患者治疗结果的新策略。
{"title":"SRSF2 mutations drive daunorubicin resistance in acute myeloid leukemia via THBS1 stabilization.","authors":"Wu Ye, Xia Wu, Yuqian Tang, Ying Zhang, Yiwen Du, Kun Yang, Yankun Yang, Yuping Gong","doi":"10.1186/s13046-026-03649-y","DOIUrl":"https://doi.org/10.1186/s13046-026-03649-y","url":null,"abstract":"<p><strong>Background: </strong>Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells, often with a poor prognosis due to therapy resistance. This study investigated the prognostic significance of SRSF2 mutations in AML and their impact on chemotherapeutic drug sensitivity.</p><p><strong>Methods: </strong>The prognostic value of SRSF2 mutations was analyzed in AML patients. SRSF2-mutant cell models were generated via lentiviral transduction for drug sensitivity testing. Xenograft mice were used to assess daunorubicin (DNR) efficacy. Mechanistic studies included transcriptomics, splicing analysis, mRNA stability, polysome profiling, RNA immunoprecipitation, and metabolic assays to identify targetable resistance pathways.</p><p><strong>Results: </strong>Clinical analysis revealed that SRSF2 mutations decreased the survival of AML patients. In vitro experiments demonstrated that SRSF2 mutation reduced the sensitivity of AML cells to drugs such as DNR and homoharringtonine but did not affect the response to venetoclax. In mouse models, DNR treatment was effective against wild-type AML but showed significantly reduced efficacy in suppressing tumors and improving survival in SRSF2-mutant AML. Mechanistically, SRSF2 mutation impaired the interaction between the SRSF2 protein and THBS1 mRNA, prolonging the THBS1 mRNA half-life and enhancing its translation efficiency, leading to THBS1 protein accumulation. Additionally, the mutation altered the splicing pattern of ETV7 and upregulated its expression, potentially mediating DNR resistance. Metabolic analysis revealed that mutant cells presented increased spare respiratory capacity, supporting energy demands under stress. Inhibition of the PDGFB pathway (CP-673451) synergistically enhanced the cytotoxic effect of DNR on mutant cells.</p><p><strong>Conclusions: </strong>SRSF2 mutations promoted DNR resistance through multiple mechanisms, and targeted combination therapy with PDGFB pathway inhibitors may represent a novel strategy to improve therapeutic outcomes in patients with mutations.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146094609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biopsy RNA-seq captures TROP-2-linked migration and clonal resistance to forecast aggressiveness in metastatic melanoma. 活检RNA-seq捕获转移性黑色素瘤中trop -2相关的迁移和克隆抗性以预测侵袭性。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-01-28 DOI: 10.1186/s13046-026-03646-1
Martina Betti, Celeste Accetta, Brindusa Ana Maria Arteni, Anya Rosselli, Elisa Melucci, Paola Visca, Claudio Botti, Fabio Pelle, Michelangelo Russillo, Virginia Ferraresi, Emilia Migliano, Marianna Cerro, Stefano Scalera, Francesca De Nicola, Silvia Matteoni, Daniela Covino, Antonino Guerrisi, Matteo Pallocca, Maurizio Fanciulli, Edoardo Pescarmona, Giovanni Blandino, Rita Mancini, Italia Falcone, Simona di Martino
{"title":"Biopsy RNA-seq captures TROP-2-linked migration and clonal resistance to forecast aggressiveness in metastatic melanoma.","authors":"Martina Betti, Celeste Accetta, Brindusa Ana Maria Arteni, Anya Rosselli, Elisa Melucci, Paola Visca, Claudio Botti, Fabio Pelle, Michelangelo Russillo, Virginia Ferraresi, Emilia Migliano, Marianna Cerro, Stefano Scalera, Francesca De Nicola, Silvia Matteoni, Daniela Covino, Antonino Guerrisi, Matteo Pallocca, Maurizio Fanciulli, Edoardo Pescarmona, Giovanni Blandino, Rita Mancini, Italia Falcone, Simona di Martino","doi":"10.1186/s13046-026-03646-1","DOIUrl":"https://doi.org/10.1186/s13046-026-03646-1","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146068448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paroxetine repurposing enhances antitumor immunity via SPOP-mediated PD-L1 ubiquitination and proteasomal degradation. 帕罗西汀通过spop介导的PD-L1泛素化和蛋白酶体降解增强抗肿瘤免疫。
IF 12.8 1区 医学 Q1 ONCOLOGY Pub Date : 2026-01-27 DOI: 10.1186/s13046-026-03648-z
Mengting Xu, Saisai Tian, Hanchi Xu, Xinying Xue, Qing Zhang, Hongmei Hu, Gaosong Wu, Xiangxin Geng, Dianping Yu, Hanchen Xu, Mei Xie, Linyang Li, Xinru Li, Simeng Li, Shize Xie, Xuwen Lin, Shuzhen Lyu, Yutong Xie, Biao Zhang, Haiyang Zhou, Qun Wang, Weidong Zhang, Sanhong Liu
{"title":"Paroxetine repurposing enhances antitumor immunity via SPOP-mediated PD-L1 ubiquitination and proteasomal degradation.","authors":"Mengting Xu, Saisai Tian, Hanchi Xu, Xinying Xue, Qing Zhang, Hongmei Hu, Gaosong Wu, Xiangxin Geng, Dianping Yu, Hanchen Xu, Mei Xie, Linyang Li, Xinru Li, Simeng Li, Shize Xie, Xuwen Lin, Shuzhen Lyu, Yutong Xie, Biao Zhang, Haiyang Zhou, Qun Wang, Weidong Zhang, Sanhong Liu","doi":"10.1186/s13046-026-03648-z","DOIUrl":"https://doi.org/10.1186/s13046-026-03648-z","url":null,"abstract":"","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":" ","pages":""},"PeriodicalIF":12.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146068474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Experimental & Clinical Cancer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1