Synthesis of Coke‐Resistant Catalyst Using NiAl2O4 Support for Hydrogen Production via Autothermal Dry Reforming of Methane

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL ChemCatChem Pub Date : 2024-09-06 DOI:10.1002/cctc.202401015
Yasin Khani, Sumin Pyo, Farzad Bahadoran, Kanghee Cho, Kwang-Eun Jeong, Young-Kwon Park
{"title":"Synthesis of Coke‐Resistant Catalyst Using NiAl2O4 Support for Hydrogen Production via Autothermal Dry Reforming of Methane","authors":"Yasin Khani, Sumin Pyo, Farzad Bahadoran, Kanghee Cho, Kwang-Eun Jeong, Young-Kwon Park","doi":"10.1002/cctc.202401015","DOIUrl":null,"url":null,"abstract":"A highly porous NiAl2O4 spinel structure was synthesized and employed as a support for catalysts in the autothermal dry reforming of methane (ATDRM) in a monolithic‐type reactor. A series of catalyst with various metal species, X/NiAl2O4@monolith (X: Ni, Co, Pt, Rh, and Ru), was prepared. NiAl2O4 support provides a high dispersion of active metal species with a uniform size distribution, due to its high surface area, and large pore volume. These features enable catalysts to maximize catalytic performance by improving the adsorption and reaction rates of reactants. More notably, the use of NiAl2O4 support enhanced catalyst longevity by retarding coke formation during the ATDRM, due to its improved catalyst acidity compared to conventional alumina support. The conversion of feeed, CH4 and CO2 on X/NiAl2O4 catalysts increases in the order of Rh > Ni > Ru > Co > Pt. Notably, the inexpensive Ni catalyst exhibits slightly lower but comparable CH4 conversion to the expensive noble metal Rh when using NiAl2O4 as a supporting material: 93.7% for Ni vs. 95.2% for Rh. Moreover, applying monolithic reactors considerably increased methane conversion compared with fixed bed reactors due to the better distribution of active metal, increased activity per unit volume, high mass/heat transfer.","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"9 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cctc.202401015","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A highly porous NiAl2O4 spinel structure was synthesized and employed as a support for catalysts in the autothermal dry reforming of methane (ATDRM) in a monolithic‐type reactor. A series of catalyst with various metal species, X/NiAl2O4@monolith (X: Ni, Co, Pt, Rh, and Ru), was prepared. NiAl2O4 support provides a high dispersion of active metal species with a uniform size distribution, due to its high surface area, and large pore volume. These features enable catalysts to maximize catalytic performance by improving the adsorption and reaction rates of reactants. More notably, the use of NiAl2O4 support enhanced catalyst longevity by retarding coke formation during the ATDRM, due to its improved catalyst acidity compared to conventional alumina support. The conversion of feeed, CH4 and CO2 on X/NiAl2O4 catalysts increases in the order of Rh > Ni > Ru > Co > Pt. Notably, the inexpensive Ni catalyst exhibits slightly lower but comparable CH4 conversion to the expensive noble metal Rh when using NiAl2O4 as a supporting material: 93.7% for Ni vs. 95.2% for Rh. Moreover, applying monolithic reactors considerably increased methane conversion compared with fixed bed reactors due to the better distribution of active metal, increased activity per unit volume, high mass/heat transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 NiAl2O4 支持物合成抗焦催化剂,用于通过甲烷自热干法转化制取氢气
合成了一种高多孔的 NiAl2O4 尖晶石结构,并将其用作整体式反应器中甲烷自热干法转化(ATDRM)催化剂的载体。制备了一系列含有不同金属种类的催化剂 X/NiAl2O4@整体(X:Ni、Co、Pt、Rh 和 Ru)。由于 NiAl2O4 具有高表面积和大孔隙率,因此它能使活性金属物种高度分散,且尺寸分布均匀。这些特点使催化剂能够通过改善反应物的吸附和反应速率来最大限度地提高催化性能。更值得注意的是,与传统的氧化铝载体相比,NiAl2O4 载体提高了催化剂的酸性,从而在 ATDRM 过程中延缓了焦炭的形成,从而延长了催化剂的寿命。在 X/NiAl2O4 催化剂上,费化物、CH4 和 CO2 的转化率按 Rh > Ni > Ru > Co > Pt 的顺序增加。值得注意的是,使用 NiAl2O4 作为支撑材料时,廉价的 Ni 催化剂与昂贵的贵金属 Rh 相比,CH4 转化率略低,但不相上下:镍的转化率为 93.7%,而 Rh 的转化率为 95.2%。此外,与固定床反应器相比,使用整体反应器可显著提高甲烷转化率,这是因为活性金属分布更均匀,单位体积活性提高,传质/传热高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
期刊最新文献
Front Cover: Nitrite Electroreduction Enhanced by Hybrid Compounds of Keggin Polyoxometalates and 1-Butyl-3-Vinylimidazolium (ChemCatChem 21/2024) Cover Feature: Photoactive Conjugated Polyelectrolyte-Ionomer Composite Coatings for Versatile Photoreactors (ChemCatChem 21/2024) Front Cover: Ethylene Dimerization, Isomerization and Trimerization: Mechanistic Insights into Competing Pathways on Metal–Organic Framework Supported Metal Hydrides (ChemCatChem 20/2024) Cover Feature: Economically competitive Organic Acid-Base mixtures as Catalysts for the Self-Condensation of Diols into Polyethers (ChemCatChem 20/2024) Retraction: Nanoporous Au/Ag Catalyzed Benzylic sp3C−H Oxidation of 9H-Fluorene Derivatives and Similar Molecules With TBHP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1