Synergistic release of copper and lithium components in biodegradable zinc alloy for osteoimmunomodulation

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-09-09 DOI:10.1007/s12598-024-02930-3
Yu-Jue Zhang, Zhao-Yong Lv, Xin Luo, Hui-Fen Qiang, Jia-Qi He, Cai-Yao Hou, Ya-Geng Li, Feng-Zhen Liu, Lu-Ning Wang
{"title":"Synergistic release of copper and lithium components in biodegradable zinc alloy for osteoimmunomodulation","authors":"Yu-Jue Zhang, Zhao-Yong Lv, Xin Luo, Hui-Fen Qiang, Jia-Qi He, Cai-Yao Hou, Ya-Geng Li, Feng-Zhen Liu, Lu-Ning Wang","doi":"10.1007/s12598-024-02930-3","DOIUrl":null,"url":null,"abstract":"<p>Zinc (Zn)-based alloys have emerged as promising bioresorbable metals for orthopedic implants because of their favorable combination of moderate degradation rates, good mechanical properties, and biocompatibility. In addition, the performance of bone implants relies heavily on their osteointegration ability, which is closely related to the immune responses triggered after implantation. In this study, two Zn-based alloys, Zn–2Cu and Zn–2Cu–0.8Li were developed, to improve the comprehensive properties of Zn implants. The introduction of copper (Cu) and lithium (Li) via alloying improved the hardness and localized corrosion resistance of Zn-based specimens. Both the Zn alloys exhibited enhanced adhesion, proliferation, and osteogenic differentiation behaviors when tested with MC3T3-E1 cells. Importantly, the immune response of RAW264.7, mediated by the two Zn alloys, with pure Zn as a control was systematically investigated. The results demonstrated that the synergistic release of Cu<sup>2+</sup> and Li<sup>+</sup> played a pivotal role in promoting the anti-inflammatory and osteoimmunomodulatory properties of degradable Zn. By alloying with Cu and Li, we achieved sequential and sustained ion release, resulting in the synergistic enhancement of osteoimmunomodulation through the modulation of the JAK-STAT signaling pathway. Finally, the Zn-based specimens were evaluated in vivo using rat mandibular defect models. After 8 weeks, the Zn–2Cu–0.8Li group exhibited significantly higher bone regeneration than the Zn–2Cu and pure Zn groups. These findings highlight the beneficial immune response and potential of Zn–Cu–Li alloys as novel biodegradable materials for orthopedic implants.</p><h3 data-test=\"abstract-sub-heading\">Grapical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02930-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc (Zn)-based alloys have emerged as promising bioresorbable metals for orthopedic implants because of their favorable combination of moderate degradation rates, good mechanical properties, and biocompatibility. In addition, the performance of bone implants relies heavily on their osteointegration ability, which is closely related to the immune responses triggered after implantation. In this study, two Zn-based alloys, Zn–2Cu and Zn–2Cu–0.8Li were developed, to improve the comprehensive properties of Zn implants. The introduction of copper (Cu) and lithium (Li) via alloying improved the hardness and localized corrosion resistance of Zn-based specimens. Both the Zn alloys exhibited enhanced adhesion, proliferation, and osteogenic differentiation behaviors when tested with MC3T3-E1 cells. Importantly, the immune response of RAW264.7, mediated by the two Zn alloys, with pure Zn as a control was systematically investigated. The results demonstrated that the synergistic release of Cu2+ and Li+ played a pivotal role in promoting the anti-inflammatory and osteoimmunomodulatory properties of degradable Zn. By alloying with Cu and Li, we achieved sequential and sustained ion release, resulting in the synergistic enhancement of osteoimmunomodulation through the modulation of the JAK-STAT signaling pathway. Finally, the Zn-based specimens were evaluated in vivo using rat mandibular defect models. After 8 weeks, the Zn–2Cu–0.8Li group exhibited significantly higher bone regeneration than the Zn–2Cu and pure Zn groups. These findings highlight the beneficial immune response and potential of Zn–Cu–Li alloys as novel biodegradable materials for orthopedic implants.

Grapical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于骨免疫调节的生物可降解锌合金中铜和锂成分的协同释放
锌(Zn)基合金具有适中的降解率、良好的机械性能和生物相容性,因此已成为骨科植入物中很有前途的生物可吸收金属。此外,骨植入物的性能在很大程度上取决于其骨整合能力,而骨整合能力与植入后引发的免疫反应密切相关。本研究开发了两种锌基合金,即 Zn-2Cu 和 Zn-2Cu-0.8Li,以改善锌植入物的综合性能。通过合金化引入铜(Cu)和锂(Li),提高了锌基试样的硬度和局部耐腐蚀性。在用 MC3T3-E1 细胞进行测试时,两种锌合金都表现出更强的粘附性、增殖性和成骨分化行为。重要的是,研究人员系统地调查了两种锌合金和纯锌作为对照的 RAW264.7 免疫反应。结果表明,Cu2+ 和 Li+ 的协同释放在促进可降解锌的抗炎和骨免疫调节特性方面发挥了关键作用。通过与 Cu 和 Li 合金,我们实现了离子的连续和持续释放,从而通过调节 JAK-STAT 信号通路协同增强了骨免疫调节功能。最后,利用大鼠下颌骨缺损模型对锌基试样进行了体内评估。8 周后,Zn-2Cu-0.8Li 组的骨再生能力明显高于 Zn-2Cu 组和纯 Zn 组。这些发现凸显了锌-铜-锂合金作为骨科植入物的新型可生物降解材料的有益免疫反应和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1