Tris-buffered efficacy: enhancing stability and reversibility of Zn anode by efficient modulation at Zn/electrolyte interface

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-09-05 DOI:10.1007/s12598-024-02990-5
Yong-Jian Wang, Su-Hong Li, Lin Li, Jian-Yong Ren, Ling-Di Shen, Chao Lai
{"title":"Tris-buffered efficacy: enhancing stability and reversibility of Zn anode by efficient modulation at Zn/electrolyte interface","authors":"Yong-Jian Wang, Su-Hong Li, Lin Li, Jian-Yong Ren, Ling-Di Shen, Chao Lai","doi":"10.1007/s12598-024-02990-5","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) have developed rapidly in recent years but still face several challenges, including zinc dendrites growth, hydrogen evolution reaction, passivation and corrosion. The pH of the electrolyte plays a crucial role in these processes, significantly impacting the stability and reversibility of Zn<sup>2+</sup> deposition. Therefore, pH-buffer tris (hydroxymethyl) amino methane (tris) is chosen as a versatile electrolyte additive to address these issues. Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group, optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions, and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface. These synergistic effects effectively restrain dendrite formation and side reactions, resulting in a highly stable and reversible Zn anode, thereby enhancing the electrochemical performance of AZIBs. The Zn||Zn battery with 0.15 wt% tris additives maintains stable cycling for 1500 h at 4 mA·cm<sup>−2</sup> and 1120 h at 10 mA·cm<sup>−2</sup>. Furthermore, the Coulombic efficiency reaches ~ 99.2% at 4 mA·cm<sup>−2</sup>@1 mAh·cm<sup>−2</sup>. The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"10 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02990-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) have developed rapidly in recent years but still face several challenges, including zinc dendrites growth, hydrogen evolution reaction, passivation and corrosion. The pH of the electrolyte plays a crucial role in these processes, significantly impacting the stability and reversibility of Zn2+ deposition. Therefore, pH-buffer tris (hydroxymethyl) amino methane (tris) is chosen as a versatile electrolyte additive to address these issues. Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group, optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions, and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface. These synergistic effects effectively restrain dendrite formation and side reactions, resulting in a highly stable and reversible Zn anode, thereby enhancing the electrochemical performance of AZIBs. The Zn||Zn battery with 0.15 wt% tris additives maintains stable cycling for 1500 h at 4 mA·cm−2 and 1120 h at 10 mA·cm−2. Furthermore, the Coulombic efficiency reaches ~ 99.2% at 4 mA·cm−2@1 mAh·cm−2. The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三缓冲功效:通过在锌/电解质界面上进行有效调节,提高锌阳极的稳定性和可逆性
近年来,水性锌离子电池(AZIBs)发展迅速,但仍面临一些挑战,包括锌枝晶生长、氢进化反应、钝化和腐蚀。电解液的 pH 值在这些过程中起着至关重要的作用,对 Zn2+ 沉积的稳定性和可逆性有重大影响。因此,pH 缓冲剂三(羟甲基)氨基甲烷(三羟甲基)被选为解决这些问题的多功能电解质添加剂。三羟甲基氨基甲烷可通过氨基的质子化/去质子化性质缓冲锌/电解质界面的电解质 pH 值,通过与锌离子的强相互作用优化锌溶质离子的配位环境,同时在锌阳极表面形成一层原位稳定的固体电解质界面膜。这些协同效应有效抑制了枝晶的形成和副反应的发生,形成了高度稳定和可逆的锌阳极,从而提高了 AZIB 的电化学性能。使用 0.15 wt% 三添加剂的 Zn||Zn 电池在 4 mA-cm-2 下可稳定循环 1500 小时,在 10 mA-cm-2 下可稳定循环 1120 小时。此外,在 4 mA-cm-2@1 mAh-cm-2 条件下,库仑效率达到约 99.2%。Zn||NVO全电池还表现出稳定的比容量和优异的容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1