Yong-Jian Wang, Su-Hong Li, Lin Li, Jian-Yong Ren, Ling-Di Shen, Chao Lai
{"title":"Tris-buffered efficacy: enhancing stability and reversibility of Zn anode by efficient modulation at Zn/electrolyte interface","authors":"Yong-Jian Wang, Su-Hong Li, Lin Li, Jian-Yong Ren, Ling-Di Shen, Chao Lai","doi":"10.1007/s12598-024-02990-5","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) have developed rapidly in recent years but still face several challenges, including zinc dendrites growth, hydrogen evolution reaction, passivation and corrosion. The pH of the electrolyte plays a crucial role in these processes, significantly impacting the stability and reversibility of Zn<sup>2+</sup> deposition. Therefore, pH-buffer tris (hydroxymethyl) amino methane (tris) is chosen as a versatile electrolyte additive to address these issues. Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group, optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions, and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface. These synergistic effects effectively restrain dendrite formation and side reactions, resulting in a highly stable and reversible Zn anode, thereby enhancing the electrochemical performance of AZIBs. The Zn||Zn battery with 0.15 wt% tris additives maintains stable cycling for 1500 h at 4 mA·cm<sup>−2</sup> and 1120 h at 10 mA·cm<sup>−2</sup>. Furthermore, the Coulombic efficiency reaches ~ 99.2% at 4 mA·cm<sup>−2</sup>@1 mAh·cm<sup>−2</sup>. The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"10 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02990-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion batteries (AZIBs) have developed rapidly in recent years but still face several challenges, including zinc dendrites growth, hydrogen evolution reaction, passivation and corrosion. The pH of the electrolyte plays a crucial role in these processes, significantly impacting the stability and reversibility of Zn2+ deposition. Therefore, pH-buffer tris (hydroxymethyl) amino methane (tris) is chosen as a versatile electrolyte additive to address these issues. Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group, optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions, and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface. These synergistic effects effectively restrain dendrite formation and side reactions, resulting in a highly stable and reversible Zn anode, thereby enhancing the electrochemical performance of AZIBs. The Zn||Zn battery with 0.15 wt% tris additives maintains stable cycling for 1500 h at 4 mA·cm−2 and 1120 h at 10 mA·cm−2. Furthermore, the Coulombic efficiency reaches ~ 99.2% at 4 mA·cm−2@1 mAh·cm−2. The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.