N/O dual coordination of cobalt single atom for fast kinetics sodium-sulfur batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-09-02 DOI:10.1007/s12598-024-02975-4
Peng Hu, Yi-Fei Wu, Xin-Peng Gao, Long Huang, Bin-Bin Cai, Yu-Xian Liu, Yao Ma, Shan Jiang, Fei Wang, Feng-Ping Xiao
{"title":"N/O dual coordination of cobalt single atom for fast kinetics sodium-sulfur batteries","authors":"Peng Hu,&nbsp;Yi-Fei Wu,&nbsp;Xin-Peng Gao,&nbsp;Long Huang,&nbsp;Bin-Bin Cai,&nbsp;Yu-Xian Liu,&nbsp;Yao Ma,&nbsp;Shan Jiang,&nbsp;Fei Wang,&nbsp;Feng-Ping Xiao","doi":"10.1007/s12598-024-02975-4","DOIUrl":null,"url":null,"abstract":"<div><p>Room-temperature sodium-sulfur batteries are promising grid-scale energy storage systems owing to their high energy density and low cost. However, their application is limited by the dissolution of long-chain sodium polysulfides and slow redox kinetics. To address these issues, a cobalt single-atom catalyst with N/O dual coordination was derived from a metal-organic framework precursor (denoted as Co–N<sub>2</sub>O<sub>2</sub>/MOFc) for sulfur storage. Theoretical analysis demonstrates that, compared with the Co–N<sub>4</sub> structure, the introduction of oxygen atoms can further tune the d-electron density of Co atoms via the coordinative effect, which enhances d-p hybridization after Na<sub>2</sub>S<sub><i>x</i></sub> adsorption on Co–N<sub>2</sub>O<sub>2</sub>/MOFc. This leads to higher adsorption energy for Na<sub>2</sub>S<sub><i>x</i></sub>, lower Gibbs free energy for the rate-limiting process and a decreased Na<sub>2</sub>S decomposition energy barrier, thereby promoting the polysulfide conversion reaction kinetics. When used as a sulfur host, the Co–N<sub>2</sub>O<sub>2</sub>/MOFc/S cathode exhibits excellent performance with a capacity of 590 mAh·g<sup>−1</sup> (983 mAh·g<sup>−1</sup> normalized by the sulfur mass) after 100 cycles at 0.1 A·g<sup>−1</sup> and an excellent rate capability of 350 mAh·g<sup>−1</sup> at 10 A·g<sup>−1</sup>.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 1","pages":"288 - 299"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02975-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Room-temperature sodium-sulfur batteries are promising grid-scale energy storage systems owing to their high energy density and low cost. However, their application is limited by the dissolution of long-chain sodium polysulfides and slow redox kinetics. To address these issues, a cobalt single-atom catalyst with N/O dual coordination was derived from a metal-organic framework precursor (denoted as Co–N2O2/MOFc) for sulfur storage. Theoretical analysis demonstrates that, compared with the Co–N4 structure, the introduction of oxygen atoms can further tune the d-electron density of Co atoms via the coordinative effect, which enhances d-p hybridization after Na2Sx adsorption on Co–N2O2/MOFc. This leads to higher adsorption energy for Na2Sx, lower Gibbs free energy for the rate-limiting process and a decreased Na2S decomposition energy barrier, thereby promoting the polysulfide conversion reaction kinetics. When used as a sulfur host, the Co–N2O2/MOFc/S cathode exhibits excellent performance with a capacity of 590 mAh·g−1 (983 mAh·g−1 normalized by the sulfur mass) after 100 cycles at 0.1 A·g−1 and an excellent rate capability of 350 mAh·g−1 at 10 A·g−1.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钴单原子的 N/O 双配位,用于快速动力学钠硫电池
室温钠硫电池能量密度高、成本低,是一种前景广阔的电网级储能系统。然而,长链多硫化钠的溶解和缓慢的氧化还原动力学限制了其应用。为了解决这些问题,研究人员从金属有机框架前体(称为 Co-N2O2/MOFc)中衍生出一种具有 N/O 双配位的钴单原子催化剂,用于硫储存。理论分析表明,与 Co-N4 结构相比,氧原子的引入可通过配位效应进一步调整 Co 原子的 d 电子密度,从而增强 Na2Sx 在 Co-N2O2/MOFc 上吸附后的 d-p 杂化。这导致 Na2Sx 的吸附能提高,限速过程的吉布斯自由能降低,Na2S 分解能垒降低,从而促进了多硫转化反应动力学。当用作硫宿主时,Co-N2O2/MOFc/S 阴极表现出优异的性能,在 0.1 A-g-1 条件下循环 100 次后,容量为 590 mAh-g-1(按硫质量归一化为 983 mAh-g-1),在 10 A-g-1 条件下,具有 350 mAh-g-1 的优异速率能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Self-assembled co-delivery system of gold nanoparticles and paclitaxel based on in-situ dynamic covalent chemistry for synergistic chemo-photothermal therapy Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Pseudo-binary composite of Sr2TiMoO6–Al2O3 as a novel microwave absorbing material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1