Biological ion channel inspired interfacial protection layer for high-performance zinc-ion batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-09-03 DOI:10.1007/s12598-024-02966-5
Kai-Xin Wang, Ru-Duan Yuan, Yu-Ting He, Sheng-Hao Reng, Qian-Zhi Gou, Si-Da Zhang, Jiang-Bin Deng, Zi-Ga Luogu, Zhao-Yu Chen, Xing-Xing Gu, Meng Li
{"title":"Biological ion channel inspired interfacial protection layer for high-performance zinc-ion batteries","authors":"Kai-Xin Wang, Ru-Duan Yuan, Yu-Ting He, Sheng-Hao Reng, Qian-Zhi Gou, Si-Da Zhang, Jiang-Bin Deng, Zi-Ga Luogu, Zhao-Yu Chen, Xing-Xing Gu, Meng Li","doi":"10.1007/s12598-024-02966-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The inherent safety, high theoretical specific capacity and low raw material cost of aqueous batteries make them potential candidates in large-scale energy storage. However, uncontrolled dendrite growth, parasitic reactions and sluggish mass transfer on the anode-electrolyte interface are the main challenges restricting the application prospect of aqueous zinc-ion batteries. In general, eukaryotic cells utilize specific ion channels to achieve ion migration with the merits of low energy consumption and rapid speed. Herein, migrating the concept of ion channels to aqueous batteries, a crown species encapsulated zeolitic imidazolate framework (ZIF) interfacial layer (denoted as ZIF@Crown) was ex situ decorated onto the Zn anode. Similar to biological ion channels, the ZIF@Crown layer can homogenize the distribution of Zn<sup>2+</sup> on the anode, accelerate the desolvation of hydrated Zn<sup>2+</sup> and reduce the energy barrier for Zn<sup>2+</sup> deposition, which were verified by theoretical calculations and experimental characterizations. Benefiting from these efficacious modulation mechanisms, the Zn@ZIF@Crown symmetrical cell could achieve a long calendar life of over 1900 h and the Zn@ZIF@Crown||Cu also sustained 600 cycles with a high Coulombic efficiency (97%). Furthermore, the full cells containing ZIF@Crown layer exhibit desirable electrochemical performance. This work provides an innovative avenue toward the optimization of aqueous batteries via bionic interfacial engineering.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"47 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02966-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent safety, high theoretical specific capacity and low raw material cost of aqueous batteries make them potential candidates in large-scale energy storage. However, uncontrolled dendrite growth, parasitic reactions and sluggish mass transfer on the anode-electrolyte interface are the main challenges restricting the application prospect of aqueous zinc-ion batteries. In general, eukaryotic cells utilize specific ion channels to achieve ion migration with the merits of low energy consumption and rapid speed. Herein, migrating the concept of ion channels to aqueous batteries, a crown species encapsulated zeolitic imidazolate framework (ZIF) interfacial layer (denoted as ZIF@Crown) was ex situ decorated onto the Zn anode. Similar to biological ion channels, the ZIF@Crown layer can homogenize the distribution of Zn2+ on the anode, accelerate the desolvation of hydrated Zn2+ and reduce the energy barrier for Zn2+ deposition, which were verified by theoretical calculations and experimental characterizations. Benefiting from these efficacious modulation mechanisms, the Zn@ZIF@Crown symmetrical cell could achieve a long calendar life of over 1900 h and the Zn@ZIF@Crown||Cu also sustained 600 cycles with a high Coulombic efficiency (97%). Furthermore, the full cells containing ZIF@Crown layer exhibit desirable electrochemical performance. This work provides an innovative avenue toward the optimization of aqueous batteries via bionic interfacial engineering.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能锌离子电池的生物离子通道启发界面保护层
摘要 水电池固有的安全性、高理论比容量和低原材料成本使其成为大规模储能的潜在候选电池。然而,阳极-电解质界面上不可控的枝晶生长、寄生反应和迟缓的传质是制约锌离子水电池应用前景的主要挑战。一般来说,真核细胞利用特定的离子通道实现离子迁移,具有能耗低、速度快的优点。本文将离子通道的概念迁移到水性电池中,在锌阳极上原位装饰了冠状物种封装的沸石咪唑酸盐框架(ZIF)界面层(称为 ZIF@Crown)。与生物离子通道类似,ZIF@Crown 层可以均匀化 Zn2+ 在阳极上的分布,加速水合 Zn2+ 的脱溶,并降低 Zn2+ 沉积的能垒,这些都已通过理论计算和实验表征得到验证。得益于这些有效的调制机制,Zn@ZIF@Crown 对称电池的日历寿命长达 1900 小时以上,Zn@ZIF@Crown||Cu 电池还能维持 600 次循环,库仑效率高达 97%。此外,含有 ZIF@Crown 层的完整电池还表现出理想的电化学性能。这项工作为通过仿生界面工程优化水性电池提供了一条创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Self-assembled co-delivery system of gold nanoparticles and paclitaxel based on in-situ dynamic covalent chemistry for synergistic chemo-photothermal therapy Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Pseudo-binary composite of Sr2TiMoO6–Al2O3 as a novel microwave absorbing material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1