Dzyaloshinskii–Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2024-08-01 DOI:10.1088/1674-1056/ad6a0e
Yaoyuan Wang, Long You, Kai Chang, Hongxin Yang
{"title":"Dzyaloshinskii–Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures","authors":"Yaoyuan Wang, Long You, Kai Chang, Hongxin Yang","doi":"10.1088/1674-1056/ad6a0e","DOIUrl":null,"url":null,"abstract":"Topological magnetism with strong robustness, nanoscale dimensions and ultralow driving current density (∼ 10<sup>6</sup> A/m<sup>2</sup>) is promising for applications in information sensing, storage, and processing, and thus sparking widespread research interest. Exploring candidate material systems with nanoscale size and easily tunable properties is a key for realizing practical topological magnetism-based spintronic devices. Here, we propose a class of ultrathin heterostructures, Fe/Bi<sub>2</sub>O<sub>2</sub><italic toggle=\"yes\">X</italic> (<italic toggle=\"yes\">X</italic> = S, Se, Te) by deposing metal Fe on quasi-two-dimensional (2D) bismuth oxychalcogenides Bi<sub>2</sub>O<sub>2</sub><italic toggle=\"yes\">X</italic> (<italic toggle=\"yes\">X</italic> = S, Se, Te) with excellent ferroelectric/ferroelastic properties. Large Dzyaloshinskii–Moriya interaction (DMI) and topological magnetism can be realized. Our atomistic spin dynamics simulations demonstrate that field-free vortex–antivortex loops and sub-10 nm skyrmions exist in Fe/Bi<sub>2</sub>O<sub>2</sub>S and Fe/Bi<sub>2</sub>O<sub>2</sub>Se interfaces, respectively. These results provide a possible strategy to tailor topological magnetism in ultrathin magnets/2D materials interfaces, which is extremely vital for spintronics applications.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad6a0e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological magnetism with strong robustness, nanoscale dimensions and ultralow driving current density (∼ 106 A/m2) is promising for applications in information sensing, storage, and processing, and thus sparking widespread research interest. Exploring candidate material systems with nanoscale size and easily tunable properties is a key for realizing practical topological magnetism-based spintronic devices. Here, we propose a class of ultrathin heterostructures, Fe/Bi2O2X (X = S, Se, Te) by deposing metal Fe on quasi-two-dimensional (2D) bismuth oxychalcogenides Bi2O2X (X = S, Se, Te) with excellent ferroelectric/ferroelastic properties. Large Dzyaloshinskii–Moriya interaction (DMI) and topological magnetism can be realized. Our atomistic spin dynamics simulations demonstrate that field-free vortex–antivortex loops and sub-10 nm skyrmions exist in Fe/Bi2O2S and Fe/Bi2O2Se interfaces, respectively. These results provide a possible strategy to tailor topological magnetism in ultrathin magnets/2D materials interfaces, which is extremely vital for spintronics applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁/铋氧粲金属异质结构中的 Dzyaloshinskii-Moriya 相互作用和无场亚 10 纳米拓扑磁性
拓扑磁性具有很强的鲁棒性、纳米级尺寸和超低驱动电流密度(∼ 106 A/m2 ),有望应用于信息传感、存储和处理,因此引发了广泛的研究兴趣。探索具有纳米级尺寸和易调谐特性的候选材料系统是实现基于拓扑磁性的实用自旋电子器件的关键。在这里,我们提出了一类超薄异质结构--Fe/Bi2O2X(X = S、Se、Te),它是通过在准二维(2D)氧粲铋化合物 Bi2O2X(X = S、Se、Te)上沉积金属 Fe 而形成的,具有优异的铁电/铁弹性特性。可以实现大的 Dzyaloshinski-Moriya 相互作用(DMI)和拓扑磁性。我们的原子自旋动力学模拟证明,Fe/Bi2O2S 和 Fe/Bi2O2Se 界面分别存在无场涡旋-反涡旋环和 10 纳米以下的天幕。这些结果为在超薄磁体/二维材料界面中定制拓扑磁性提供了可能的策略,这对自旋电子学的应用极为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1