{"title":"Carboxylated graphene oxide-reinforced polyvinyl alcohol/soy protein composite fibers: thermal and mechanical study","authors":"Hao Li, Yingbo Chen, Pengfei Li, Ke Zhao","doi":"10.1007/s13726-024-01368-9","DOIUrl":null,"url":null,"abstract":"<p>The environmental crisis caused by the use of petroleum-based fibers and the massive depletion of petroleum resources threaten the sustainable development of mankind. Therefore, regenerated protein fibers have gained widespread attention for their green credentials, ingenuity and excellent compatibility. In this work, polyvinyl alcohol (PVA)/soy protein (SP)-carboxylated graphene oxide (GO–COOH) (PVA/SP–GO–COOH) composite fibers were prepared by wet spinning of aqueous solution containing PVA, SP, and GO-COOH. The composite fibers were analyzed for their morphology, structure, thermal stability, and mechanical properties. The results indicated that the composite fibers have both the glossy properties of SP and excellent mechanical properties of PVA. This was attributed to the good dispersion and compatibility of SP and GO–COOH in the PVA matrix. When GO–COOH was added at 0.5% (by weight), the tensile strength of the composite fibers reached 3.29 cN/dtex and the Young’s modulus was 113.92 cN/dtex, which increased by 87% and 67%, respectively, as compared to that of the pure PVA fiber. The moisture regains of the composite fibers reached 8.27%. Furthermore, the maximum decomposition temperature reached 326.7 °C and the thermal stability of the composite fibers increased due to the shielding effect of GO–COOH and formation of hydrogen bonding with the polymer.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01368-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental crisis caused by the use of petroleum-based fibers and the massive depletion of petroleum resources threaten the sustainable development of mankind. Therefore, regenerated protein fibers have gained widespread attention for their green credentials, ingenuity and excellent compatibility. In this work, polyvinyl alcohol (PVA)/soy protein (SP)-carboxylated graphene oxide (GO–COOH) (PVA/SP–GO–COOH) composite fibers were prepared by wet spinning of aqueous solution containing PVA, SP, and GO-COOH. The composite fibers were analyzed for their morphology, structure, thermal stability, and mechanical properties. The results indicated that the composite fibers have both the glossy properties of SP and excellent mechanical properties of PVA. This was attributed to the good dispersion and compatibility of SP and GO–COOH in the PVA matrix. When GO–COOH was added at 0.5% (by weight), the tensile strength of the composite fibers reached 3.29 cN/dtex and the Young’s modulus was 113.92 cN/dtex, which increased by 87% and 67%, respectively, as compared to that of the pure PVA fiber. The moisture regains of the composite fibers reached 8.27%. Furthermore, the maximum decomposition temperature reached 326.7 °C and the thermal stability of the composite fibers increased due to the shielding effect of GO–COOH and formation of hydrogen bonding with the polymer.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.