Design strategy and molecular level understanding: hole transport materials with suitable transition dipole orientation for OLEDs

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2024-08-22 DOI:10.1039/d3me00127j
Krishan Kumar, Sunil Kumar, Anirban Karmakar, Dipanshu Sharma, Feng-Rong Chen, Mangey Ram Nagar, Jwo-Huei Jou, Subrata Banik, Subrata Ghosh
{"title":"Design strategy and molecular level understanding: hole transport materials with suitable transition dipole orientation for OLEDs","authors":"Krishan Kumar, Sunil Kumar, Anirban Karmakar, Dipanshu Sharma, Feng-Rong Chen, Mangey Ram Nagar, Jwo-Huei Jou, Subrata Banik, Subrata Ghosh","doi":"10.1039/d3me00127j","DOIUrl":null,"url":null,"abstract":"The development of hole transport materials with desirable properties is important for the fabrication of efficient organic light-emitting diodes (OLEDs). The present work demonstrates an approach for developing a library of phenothiazine-based hole transport materials (HTMs) for OLED application with considerably good triplet energy (theoretical). Furthermore, the single-crystal structure analysis at the molecular level for some of the developed molecules reveals the possibility of poor electronic communications between the corresponding units. Theoretical studies on transition dipole orientation revealed that all the present phenothiazine-based molecules have appreciable transition dipole orientation. Hence, the objective of the current work has been to assess the impact of chemical structures on certain features of a group of phenothiazine-based functional molecular HTMs with donor–acceptor characteristics. Finally, the hole-only devices (HODs) were fabricated with the synthesized materials as HTMs, and these showed an enhancement in current density with the increase in operating voltage from ∼2–8 V. All these theoretical and experimental outcomes suggested that the present set of molecules could be used as possible efficient HTMs for OLED applications.","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d3me00127j","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of hole transport materials with desirable properties is important for the fabrication of efficient organic light-emitting diodes (OLEDs). The present work demonstrates an approach for developing a library of phenothiazine-based hole transport materials (HTMs) for OLED application with considerably good triplet energy (theoretical). Furthermore, the single-crystal structure analysis at the molecular level for some of the developed molecules reveals the possibility of poor electronic communications between the corresponding units. Theoretical studies on transition dipole orientation revealed that all the present phenothiazine-based molecules have appreciable transition dipole orientation. Hence, the objective of the current work has been to assess the impact of chemical structures on certain features of a group of phenothiazine-based functional molecular HTMs with donor–acceptor characteristics. Finally, the hole-only devices (HODs) were fabricated with the synthesized materials as HTMs, and these showed an enhancement in current density with the increase in operating voltage from ∼2–8 V. All these theoretical and experimental outcomes suggested that the present set of molecules could be used as possible efficient HTMs for OLED applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计策略和分子层面的理解:具有合适过渡偶极取向的空穴传输材料,适用于有机发光二极管
开发具有理想特性的空穴传输材料对于制造高效有机发光二极管(OLED)非常重要。本研究展示了一种开发基于吩噻嗪的空穴传输材料(HTMs)库的方法,这些材料具有相当好的三重能(理论值),可用于有机发光二极管。此外,对一些已开发分子进行的分子级单晶结构分析表明,相应单元之间的电子通信可能很差。对过渡偶极取向的理论研究表明,目前所有基于吩噻嗪的分子都具有明显的过渡偶极取向。因此,当前工作的目标是评估化学结构对一组具有供体-受体特性的吩噻嗪基功能分子 HTM 某些特征的影响。最后,以合成的材料为 HTM 制作了纯空穴器件 (HOD),这些器件的电流密度随着工作电压在 2-8 V 之间的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Back cover Molecular design of protein-based materials – state of the art, opportunities and challenges at the interface between materials engineering and synthetic biology Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery Controlling the Photochromism of Zirconium Pyromellitic Diimide-Based Metal-Organic Frameworks through Coordinating Solvents On the design of optimal computer experiments to model solvent effects on reaction kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1