Quantum Gravitational Eigenstates in Navarro–Frenk–White Potentials

IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Gravitation and Cosmology Pub Date : 2024-08-23 DOI:10.1134/s0202289324700233
Isaac Lobo, Allan Ernest, Matthew Collins
{"title":"Quantum Gravitational Eigenstates in Navarro–Frenk–White Potentials","authors":"Isaac Lobo, Allan Ernest, Matthew Collins","doi":"10.1134/s0202289324700233","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Gravitational quantum theory applied to the weak gravity regions of deep gravitational wells predicts that photon-particle interaction cross sections can vary significantly, depending on the eigenspectral composition of the particle’s wave function. These often-reduced cross sections can potentially enable the nature and origin of dark matter to be understood without recourse to new particles or new physics, and without compromising the observations from nucleosynthesis and the cosmic microwave background. The present work extends the calculations of the Einstein-<span>\\(A\\)</span> coefficients relevant to these photon interactions (previously carried out for <span>\\(1/r\\)</span> central point-mass (CPM) potentials) to potentials derived from Navarro–Frenk–White (NFW) radial density profiles, which more realistically describe galaxy halos. The Wentzel–Kramers–Brillouin (WKB) and Modified Airy Function (MAF) approximation strategies were used to find the eigenfunctions appropriate to these potentials, and hence obtain the relevant Einstein-<span>\\(A\\)</span> coefficients. The results show that states with high principal and angular quantum number in NFW potentials have a significantly low transition rate. The results are also compared to those in the CPM potentials published in an earlier work.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1134/s0202289324700233","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gravitational quantum theory applied to the weak gravity regions of deep gravitational wells predicts that photon-particle interaction cross sections can vary significantly, depending on the eigenspectral composition of the particle’s wave function. These often-reduced cross sections can potentially enable the nature and origin of dark matter to be understood without recourse to new particles or new physics, and without compromising the observations from nucleosynthesis and the cosmic microwave background. The present work extends the calculations of the Einstein-\(A\) coefficients relevant to these photon interactions (previously carried out for \(1/r\) central point-mass (CPM) potentials) to potentials derived from Navarro–Frenk–White (NFW) radial density profiles, which more realistically describe galaxy halos. The Wentzel–Kramers–Brillouin (WKB) and Modified Airy Function (MAF) approximation strategies were used to find the eigenfunctions appropriate to these potentials, and hence obtain the relevant Einstein-\(A\) coefficients. The results show that states with high principal and angular quantum number in NFW potentials have a significantly low transition rate. The results are also compared to those in the CPM potentials published in an earlier work.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳瓦罗-弗伦克-怀特势中的量子引力特征状态
摘要引力量子理论应用于深引力井的弱引力区时预测,光子-粒子相互作用截面会有很大的变化,这取决于粒子波函数的特征谱组成。这些经常减小的截面有可能使人们在不求助于新粒子或新物理的情况下,在不影响核合成和宇宙微波背景观测的情况下,理解暗物质的性质和起源。本研究将与这些光子相互作用相关的爱因斯坦-(A)系数的计算(以前是针对(1/r/)中心点-质量(CPM)势进行的)扩展到了纳瓦罗-弗伦克-怀特(NFW)径向密度剖面得出的势,后者更真实地描述了星系晕。我们使用温策尔-克拉默-布里渊(WKB)和修正空气函数(MAF)近似策略来寻找适合这些势的特征函数,从而得到相关的爱因斯坦系数。结果表明,在 NFW 势中,主量子数和角量子数较高的态的转变率明显较低。这些结果还与早先发表的 CPM 势中的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gravitation and Cosmology
Gravitation and Cosmology ASTRONOMY & ASTROPHYSICS-
CiteScore
1.70
自引率
22.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community
期刊最新文献
Initial Data Problem for a Traversable Wormhole with Interacting Mouths Machian Effects Inside a Rotating Spherical Shell Riemann Solitons on Relativistic Space-Times Prediction of Super-Exponentially Accelerated Universe in a Friedmann–Lemaitre–Robertson–Walker Metric Quantum Gravitational Eigenstates in Navarro–Frenk–White Potentials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1