{"title":"Ecofriendly Synthesis of Silver Nanoparticle for Phytochemical Screening, Photocatalytic and Biological Applications","authors":"Nayab Nadeem, Aqsa Habib, Shabeeb Hussain, Abu Sufian, Ishaq Ahmad, Fozia Noreen, Arslan Mehmood, Furqan Ali, Khalid Mujasam Batoo, Muhammad Farzik Ijaz","doi":"10.1007/s10904-024-03326-7","DOIUrl":null,"url":null,"abstract":"<p>Herein this manuscript we demonstrate phytochemical screening results of different parts of common medicinal plants including <i>Acacia nilotica</i> buds, <i>Acacia nilotica</i> leaf, <i>Syzgium aromaticum</i> buds, <i>Syzgium cumini</i> leaf, <i>Terminalia chebula</i> dried fruit and <i>Azadirachta indica</i> leaves. Based on largest TPC and TFC, bud extract of <i>Acacia nilotica</i> was selected for microwave-assisted biological fabrication of silver nanoparticles (Ag-NPs). UV-Vis spectroscopy confirmed silver nanoparticles with a surface plasmon resonance between 410 and 460 nm. FTIR analysis indicated the existence of various bioactive compounds from extract capped the Ag-NPs which increased their stability. Crystallinity, lattice parameters, symmetry and average crystallite size (about 8.73 nm) of prepared Ag-NPs were examined by powder XRD. The spherical shaped Ag-NPs observed in TEM images further supported the size and crystallinity calculated on the basis of of powder XRD analysis. The Ag-NPs efficiently degraded IC dye (about 86.12%) at pH 3 and exhibited strong antibacterial activity against <i>S. aureus</i> and <i>E. coli</i>. This approach offers a quick, energy-efficient method for producing high-yield and uniformly sized nanoparticles. Thus, microwave-assisted synthesis proves advantageous due to its reduced reaction time, lower energy consumption and the production of stable, non-aggregated green nanoparticles with narrow size distribution and high yield.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03326-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Herein this manuscript we demonstrate phytochemical screening results of different parts of common medicinal plants including Acacia nilotica buds, Acacia nilotica leaf, Syzgium aromaticum buds, Syzgium cumini leaf, Terminalia chebula dried fruit and Azadirachta indica leaves. Based on largest TPC and TFC, bud extract of Acacia nilotica was selected for microwave-assisted biological fabrication of silver nanoparticles (Ag-NPs). UV-Vis spectroscopy confirmed silver nanoparticles with a surface plasmon resonance between 410 and 460 nm. FTIR analysis indicated the existence of various bioactive compounds from extract capped the Ag-NPs which increased their stability. Crystallinity, lattice parameters, symmetry and average crystallite size (about 8.73 nm) of prepared Ag-NPs were examined by powder XRD. The spherical shaped Ag-NPs observed in TEM images further supported the size and crystallinity calculated on the basis of of powder XRD analysis. The Ag-NPs efficiently degraded IC dye (about 86.12%) at pH 3 and exhibited strong antibacterial activity against S. aureus and E. coli. This approach offers a quick, energy-efficient method for producing high-yield and uniformly sized nanoparticles. Thus, microwave-assisted synthesis proves advantageous due to its reduced reaction time, lower energy consumption and the production of stable, non-aggregated green nanoparticles with narrow size distribution and high yield.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.