Zinc MOF and Melamine Sponge Composite: A Cutting-Edge Solution for Dose-Dependent Dye Degradation and Ultra-Sensitive Chemical Sensing of Nitro Derivatives and Sucrose
{"title":"Zinc MOF and Melamine Sponge Composite: A Cutting-Edge Solution for Dose-Dependent Dye Degradation and Ultra-Sensitive Chemical Sensing of Nitro Derivatives and Sucrose","authors":"Vibhav Shukla, Nazrul Haq, Kafeel Ahmad Siddiqui","doi":"10.1007/s10904-024-03350-7","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the innovative applications of the <b>[Zn</b><sub><b>9</b></sub><b>(Cei)</b><sub><b>6</b></sub><b>(Bimb)</b><sub>*<b>9</b></sub><b>]</b><sub><b>n</b></sub><b>(Zn-MOF)</b> metal-organic framework and its composite with melamine sponge (<b>Zn-MOF@MS</b>) in the domains of photocatalytic degradation and fluorescence sensing. The <b>Zn-MOF@MS</b> composite demonstrates exceptional performance in the photocatalytic degradation of Rose Bengal (RB) dye, achieving a high degradation rate under optimized conditions (pH 5, 10 mg/L RB concentration, 6 mg photocatalyst dosage, and 120-minute reaction time). Additionally, <b>Zn-MOF</b> exhibits notable fluorescence sensing capabilities, enabling the detection of 2-nitrotoluene (2NT) and sucrose at low concentrations, with detection limits of 0.298 ppm and 1.129 ppm, respectively. These results highlight the novel integration of <b>Zn-MOF</b> with a melamine sponge matrix, showcasing significant advancements in both environmental remediation and analytical chemistry. The study underscores the potential of <b>Zn-MOF@MS</b> as a versatile material with substantial implications for improving dye degradation processes and enhancing chemical sensing precision. This work advances the field by demonstrating the dual functionality of <b>Zn-MOF</b> materials and providing a robust platform for future research and technological development in environmental and analytical applications.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"12 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03350-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the innovative applications of the [Zn9(Cei)6(Bimb)*9]n(Zn-MOF) metal-organic framework and its composite with melamine sponge (Zn-MOF@MS) in the domains of photocatalytic degradation and fluorescence sensing. The Zn-MOF@MS composite demonstrates exceptional performance in the photocatalytic degradation of Rose Bengal (RB) dye, achieving a high degradation rate under optimized conditions (pH 5, 10 mg/L RB concentration, 6 mg photocatalyst dosage, and 120-minute reaction time). Additionally, Zn-MOF exhibits notable fluorescence sensing capabilities, enabling the detection of 2-nitrotoluene (2NT) and sucrose at low concentrations, with detection limits of 0.298 ppm and 1.129 ppm, respectively. These results highlight the novel integration of Zn-MOF with a melamine sponge matrix, showcasing significant advancements in both environmental remediation and analytical chemistry. The study underscores the potential of Zn-MOF@MS as a versatile material with substantial implications for improving dye degradation processes and enhancing chemical sensing precision. This work advances the field by demonstrating the dual functionality of Zn-MOF materials and providing a robust platform for future research and technological development in environmental and analytical applications.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.