A Novel Cellulose-Based Composite Hydrogel Microsphere Material: for Efficient Adsorption of Co(II) and Ni(II) Ions in Water

IF 3.9 3区 化学 Q2 POLYMER SCIENCE Journal of Inorganic and Organometallic Polymers and Materials Pub Date : 2024-08-19 DOI:10.1007/s10904-024-03323-w
Jingru Zhao, Zifei Wei, Linan Sun, Ying Wang, Xiaodan Wu, Tao Wang, Zihan Wang, Yujie Fu
{"title":"A Novel Cellulose-Based Composite Hydrogel Microsphere Material: for Efficient Adsorption of Co(II) and Ni(II) Ions in Water","authors":"Jingru Zhao, Zifei Wei, Linan Sun, Ying Wang, Xiaodan Wu, Tao Wang, Zihan Wang, Yujie Fu","doi":"10.1007/s10904-024-03323-w","DOIUrl":null,"url":null,"abstract":"<p>Heavy metal ions contain highly toxic and non-biodegradable wastewater pollutants seriously contaminating the environment and affecting human health. Removal of heavy metal ions from the environment is a vital step towards the elimination of water pollution on a global scale. Therefore, in this study, cellulose was modified with L-cysteine, sodium alginate and polyethyleneimine to produce cellulose/sodium alginate /polyethyleneimine/L-cysteine composite hydrogel microspheres (WCMs/SA/PEI/L-Cys) in order to efficiently adsorb heavy metal ions. Co(II) and Ni(II) are successfully removed from water. After their production, the sorbents underwent examination using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and Scanning electron microscopy (SEM). In addition, the investigation of the mechanism and adsorption characteristics of cellulose-modified gel microspheres WCMs/SA/PEI/L-Cys has been completed. The majority of the adsorption of contaminants by cellulose-modified gel microspheres WCMs/SA/PEI/L-Cys adhered to the Langmuir isothermal adsorption model and quasi-secondary kinetic model. The intra-particle diffusion model was adopted for improving the fitting of the adsorption process in the materials. It was indicated that the internal and external diffusion acted together to eliminate the contaminants from the materials. When exploring the decontamination mechanism of the materials using XPS, it was shown that the functional groups containing nitrogen, oxygen and sulfur play a key role in removing contaminants. For Co(II) and Ni(II), the highest adsorption capacities of the sorbent were 358 and 373 mg/g, respectively. The material exhibited robust stability and recyclability based on the regeneration experiment results, remaining stable after six adsorption cycles and retaining over 80% of the initial adsorption amount.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03323-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal ions contain highly toxic and non-biodegradable wastewater pollutants seriously contaminating the environment and affecting human health. Removal of heavy metal ions from the environment is a vital step towards the elimination of water pollution on a global scale. Therefore, in this study, cellulose was modified with L-cysteine, sodium alginate and polyethyleneimine to produce cellulose/sodium alginate /polyethyleneimine/L-cysteine composite hydrogel microspheres (WCMs/SA/PEI/L-Cys) in order to efficiently adsorb heavy metal ions. Co(II) and Ni(II) are successfully removed from water. After their production, the sorbents underwent examination using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and Scanning electron microscopy (SEM). In addition, the investigation of the mechanism and adsorption characteristics of cellulose-modified gel microspheres WCMs/SA/PEI/L-Cys has been completed. The majority of the adsorption of contaminants by cellulose-modified gel microspheres WCMs/SA/PEI/L-Cys adhered to the Langmuir isothermal adsorption model and quasi-secondary kinetic model. The intra-particle diffusion model was adopted for improving the fitting of the adsorption process in the materials. It was indicated that the internal and external diffusion acted together to eliminate the contaminants from the materials. When exploring the decontamination mechanism of the materials using XPS, it was shown that the functional groups containing nitrogen, oxygen and sulfur play a key role in removing contaminants. For Co(II) and Ni(II), the highest adsorption capacities of the sorbent were 358 and 373 mg/g, respectively. The material exhibited robust stability and recyclability based on the regeneration experiment results, remaining stable after six adsorption cycles and retaining over 80% of the initial adsorption amount.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型纤维素基复合水凝胶微球材料:用于高效吸附水中的钴(II)和镍(II)离子
重金属离子含有剧毒和不可生物降解的废水污染物,严重污染环境并影响人类健康。去除环境中的重金属离子是在全球范围内消除水污染的重要一步。因此,本研究用 L-半胱氨酸、海藻酸钠和聚乙烯亚胺对纤维素进行改性,制成纤维素/海藻酸钠/聚乙烯亚胺/L-半胱氨酸复合水凝胶微球(WCMs/SA/PEI/L-Cys),以有效吸附重金属离子。成功地从水中去除了 Co(II) 和 Ni(II)。吸附剂制备完成后,使用 X 射线衍射、扫描电子显微镜、X 射线光电子能谱、傅立叶变换红外光谱和扫描电子显微镜进行了检测。此外,还完成了对纤维素改性凝胶微球 WCMs/SA/PEI/L-Cys 的机理和吸附特性的研究。纤维素改性凝胶微球 WCMs/SA/PEI/L-Cys 对污染物的吸附大多符合 Langmuir 等温吸附模型和准二级动力学模型。为了提高材料吸附过程的拟合度,采用了颗粒内扩散模型。结果表明,内部扩散和外部扩散共同作用,消除了材料中的污染物。在利用 XPS 探索材料的去污机理时,结果表明含氮、氧和硫的官能团在去除污染物方面发挥了关键作用。对于钴(II)和镍(II),吸附剂的最高吸附容量分别为 358 毫克/克和 373 毫克/克。根据再生实验结果,该材料具有很强的稳定性和可回收性,经过六个吸附循环后仍保持稳定,并保留了 80% 以上的初始吸附量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
7.50%
发文量
335
审稿时长
1.8 months
期刊介绍: Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.
期刊最新文献
Retraction Note: Two Mn(II)-Organic Frameworks: Selective Detection of Fe3+ Ion and Treatment Activity on Alcohol-Induced Cerebellar Atrophy by Reducing ROS Accumulation in Brain Retraction Note: Biocompatibility and Antimicrobial Investigation of Agar-Tannic Acid Hydrogel Reinforced with Silk Fibroin and Zinc Manganese Oxide Magnetic Microparticles Environmentally Sustainable Techniques for rGO Synthesis: Focus on Spun Calcination and Clean Technology Advances Synthesis of Nanoscale ZSM-5 Zeolites for the Catalytic Cracking of Oleic Acid into Light Olefins and Aromatics DFT-Based Tailoring of the Thermoelectric and Photovoltaic Response of the Halide Double Perovskite Cs2TlYF6 (Y = Ag, Co)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1