{"title":"fg-ORKA: fast and gridless reconstruction of moving and deforming objects in multidimensional data","authors":"Florian Bossmann, Jianwei Ma and Wenze Wu","doi":"10.1088/1361-6420/ad7495","DOIUrl":null,"url":null,"abstract":"Identifying and tracking objects over multiple observations is a frequent task in many applications. Traffic monitoring requires the tracking of vehicles or pedestrians in video data and geophysical exploration relies on identifying seismic wave fronts from data of multiple sensors, only to mention two examples. In many cases, the object changes its shape or position within the given data from one observation to another. Vehicles can change their position and angle relative to the camera while seismic waves have different arrival times, frequencies, or intensities depending on the sensor position. This complicates the task at hand. In a previous work, the authors presented a new algorithm to solve this problem—object reconstruction using K-approximation (ORKA). This algorithm is hindered by two conflicting limitations: the tracked movement is limited by the sampling grid while the complexity increases exponentially with the resolution. We introduce an iterative variant of the ORKA algorithm that is able to overcome this conflict. We also give a brief introduction on the original ORKA algorithm. Knowledge of the previous work is thus not required. We give theoretical error bounds and a complexity analysis which we validate with several numerical experiments. Moreover, we discuss the influence of different parameter choices in detail. The results clearly show that the iterative approach can outperform ORKA in both accuracy and efficiency. On the example of video processing we show that the new method can be applied where the original algorithm is too time and memory intensive. Furthermore, we demonstrate on seismic exploration data that we are now able to recover much finer details on the wave front movement then before.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"58 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad7495","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying and tracking objects over multiple observations is a frequent task in many applications. Traffic monitoring requires the tracking of vehicles or pedestrians in video data and geophysical exploration relies on identifying seismic wave fronts from data of multiple sensors, only to mention two examples. In many cases, the object changes its shape or position within the given data from one observation to another. Vehicles can change their position and angle relative to the camera while seismic waves have different arrival times, frequencies, or intensities depending on the sensor position. This complicates the task at hand. In a previous work, the authors presented a new algorithm to solve this problem—object reconstruction using K-approximation (ORKA). This algorithm is hindered by two conflicting limitations: the tracked movement is limited by the sampling grid while the complexity increases exponentially with the resolution. We introduce an iterative variant of the ORKA algorithm that is able to overcome this conflict. We also give a brief introduction on the original ORKA algorithm. Knowledge of the previous work is thus not required. We give theoretical error bounds and a complexity analysis which we validate with several numerical experiments. Moreover, we discuss the influence of different parameter choices in detail. The results clearly show that the iterative approach can outperform ORKA in both accuracy and efficiency. On the example of video processing we show that the new method can be applied where the original algorithm is too time and memory intensive. Furthermore, we demonstrate on seismic exploration data that we are now able to recover much finer details on the wave front movement then before.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.