Phase retrieval and phaseless inverse scattering with background information

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Inverse Problems Pub Date : 2024-08-30 DOI:10.1088/1361-6420/ad6fc6
Thorsten Hohage, Roman G Novikov, Vladimir N Sivkin
{"title":"Phase retrieval and phaseless inverse scattering with background information","authors":"Thorsten Hohage, Roman G Novikov, Vladimir N Sivkin","doi":"10.1088/1361-6420/ad6fc6","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding a compactly supported potential in the multidimensional Schrödinger equation from its differential scattering cross section (squared modulus of the scattering amplitude) at fixed energy. In the Born approximation this problem simplifies to the phase retrieval problem of reconstructing the potential from the absolute value of its Fourier transform on a ball. To compensate for the missing phase information we use the method of <italic toggle=\"yes\">a priori</italic> known background scatterers. In particular, we propose an iterative scheme for finding the potential from measurements of a single differential scattering cross section corresponding to the sum of the unknown potential and a known background potential, which is sufficiently disjoint. If this condition is relaxed, then we give similar results for finding the potential from additional monochromatic measurements of the differential scattering cross section of the unknown potential without the background potential. The performance of the proposed algorithms is demonstrated in numerical examples. In the present work we significantly advance theoretically and numerically studies of Agaltsov <italic toggle=\"yes\">et al</italic> (2019 <italic toggle=\"yes\">Inverse Problems</italic> <bold>35</bold> 24001) and Novikov and Sivkin (2021 <italic toggle=\"yes\">Inverse Problems</italic> <bold>37</bold> 055011).","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"10 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad6fc6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of finding a compactly supported potential in the multidimensional Schrödinger equation from its differential scattering cross section (squared modulus of the scattering amplitude) at fixed energy. In the Born approximation this problem simplifies to the phase retrieval problem of reconstructing the potential from the absolute value of its Fourier transform on a ball. To compensate for the missing phase information we use the method of a priori known background scatterers. In particular, we propose an iterative scheme for finding the potential from measurements of a single differential scattering cross section corresponding to the sum of the unknown potential and a known background potential, which is sufficiently disjoint. If this condition is relaxed, then we give similar results for finding the potential from additional monochromatic measurements of the differential scattering cross section of the unknown potential without the background potential. The performance of the proposed algorithms is demonstrated in numerical examples. In the present work we significantly advance theoretically and numerically studies of Agaltsov et al (2019 Inverse Problems 35 24001) and Novikov and Sivkin (2021 Inverse Problems 37 055011).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带背景信息的相位检索和无相位反向散射
我们考虑的问题是,在固定能量下,如何从微分散射截面(散射振幅的平方模)中找到多维薛定谔方程中的紧凑支撑势。在玻恩近似中,这一问题简化为相位检索问题,即根据球上傅里叶变换的绝对值重建势。为了弥补缺失的相位信息,我们采用了先验已知背景散射体的方法。特别是,我们提出了一种迭代方案,通过测量单个微分散射截面来寻找电势,该截面对应于未知电势与已知背景电势之和,且两者之间有足够的不连续性。如果放宽这一条件,那么我们也能给出类似的结果,即通过对未知电势的差分散射截面进行额外的单色测量,在不考虑背景电势的情况下找到电势。我们通过数值示例演示了所提算法的性能。在本研究中,我们大大推进了阿加尔佐夫等人(2019 逆问题 35 24001)以及诺维科夫和西夫金(2021 逆问题 37 055011)的理论和数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
期刊最新文献
Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach. Linearized boundary control method for density reconstruction in acoustic wave equations. A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging * A bilevel optimization method for inverse mean-field games * Lipschitz stability of an inverse conductivity problem with two Cauchy data pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1