Green synthesis of iron oxide nanoparticles from Iris kashmiriana (Mazar-Graveyard) Plant Extract its characterization of biological activities and photocatalytic activity
{"title":"Green synthesis of iron oxide nanoparticles from Iris kashmiriana (Mazar-Graveyard) Plant Extract its characterization of biological activities and photocatalytic activity","authors":"Asima Imtiyaz, Ajay Singh, Abhishek Bhardwaj","doi":"10.1016/j.jiec.2024.09.004","DOIUrl":null,"url":null,"abstract":"A significant area of interest for researchers has been the creation of trustworthy experimental techniques for producing metallic nanoparticles with specified structures and dimensions. Due to the unique features that make them usable in various scientific and technological disciplines, metallic nanoparticles made by green synthesis have attracted enormous interest over the past ten years. In this study, the plant extract of was used to create iron oxide nanoparticles utilizing a relatively affordable and straightforward conventional heating process. Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction were used to analyze the iron nanoparticles. Particles with diameters of 20–40 nm were created. The synthesized Iron oxide nanoparticles exhibit significant antibacterial effects against four pathogens by exhibiting a zone of inhibition for Vancomycin. The antioxidant activity DPPH of the iron oxide nanoparticles showed 83.29 %, 84.96 %, 86.71 %, 88.62 %, and 88.65 % at a different concentration, demonstrating that the scavenging percentage increases with increasing the iron oxide nanoparticles concentrations. After an investigation, Iron oxide nanoparticles were capable of photo-catalytically degrading Congo red. It was observed that at the maximum exposure length of 60 min, approximately 95 % of the dye was destroyed. This study’s findings open up new possibilities for creating, modifying, and using plant extract in nanoparticle design, development, and application.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"266 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.09.004","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A significant area of interest for researchers has been the creation of trustworthy experimental techniques for producing metallic nanoparticles with specified structures and dimensions. Due to the unique features that make them usable in various scientific and technological disciplines, metallic nanoparticles made by green synthesis have attracted enormous interest over the past ten years. In this study, the plant extract of was used to create iron oxide nanoparticles utilizing a relatively affordable and straightforward conventional heating process. Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction were used to analyze the iron nanoparticles. Particles with diameters of 20–40 nm were created. The synthesized Iron oxide nanoparticles exhibit significant antibacterial effects against four pathogens by exhibiting a zone of inhibition for Vancomycin. The antioxidant activity DPPH of the iron oxide nanoparticles showed 83.29 %, 84.96 %, 86.71 %, 88.62 %, and 88.65 % at a different concentration, demonstrating that the scavenging percentage increases with increasing the iron oxide nanoparticles concentrations. After an investigation, Iron oxide nanoparticles were capable of photo-catalytically degrading Congo red. It was observed that at the maximum exposure length of 60 min, approximately 95 % of the dye was destroyed. This study’s findings open up new possibilities for creating, modifying, and using plant extract in nanoparticle design, development, and application.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.