NiO-LaCoO3 catalysts for biomass pyrolysis to hydrogen-rich gas

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2024-08-25 DOI:10.1016/j.jiec.2024.08.040
Yijian Hu, Zhaosheng Yu, Wenchang Yue, Zi You, Xiaoqian Ma
{"title":"NiO-LaCoO3 catalysts for biomass pyrolysis to hydrogen-rich gas","authors":"Yijian Hu, Zhaosheng Yu, Wenchang Yue, Zi You, Xiaoqian Ma","doi":"10.1016/j.jiec.2024.08.040","DOIUrl":null,"url":null,"abstract":"This study presents a new pathway for effective and environmentally friendly hydrogen generation from biomass pyrolysis using perovskite-type catalysts for highly valuable biomass conversion. Firstly, the impact of different Ni doping levels on LaCoO catalytic reactivity was investigated. On this basis, the impacts of different carbide slag adding proportions and reaction temperatures on the hydrogen yield and concentration were investigated. Among them, the maximum hydrogen yield at 600 °C under NiLaCo catalyst is 553.79 mL/g when the proportion of carbide slag is 5:15, and the volume concentration of hydrogen is 62.67 vol%. The outcomes demonstrated that the prepared NiO-LaCoO has excellent cycling performance, and the hydrogen yield of the NiLaCo catalyst decreased only marginally from 546.98 mL/g to 503.94 mL/g after ten cycles, with a comparatively small reduction of only 7.87 %. In particular, a high hydrogen concentration of 63.43 vol% is maintained in the pyrolysis gas.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"24 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new pathway for effective and environmentally friendly hydrogen generation from biomass pyrolysis using perovskite-type catalysts for highly valuable biomass conversion. Firstly, the impact of different Ni doping levels on LaCoO catalytic reactivity was investigated. On this basis, the impacts of different carbide slag adding proportions and reaction temperatures on the hydrogen yield and concentration were investigated. Among them, the maximum hydrogen yield at 600 °C under NiLaCo catalyst is 553.79 mL/g when the proportion of carbide slag is 5:15, and the volume concentration of hydrogen is 62.67 vol%. The outcomes demonstrated that the prepared NiO-LaCoO has excellent cycling performance, and the hydrogen yield of the NiLaCo catalyst decreased only marginally from 546.98 mL/g to 503.94 mL/g after ten cycles, with a comparatively small reduction of only 7.87 %. In particular, a high hydrogen concentration of 63.43 vol% is maintained in the pyrolysis gas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物质热解制取富氢气的 NiO-LaCoO3 催化剂
本研究提出了一种利用过氧化物型催化剂从生物质热解中高效、环保地制氢的新途径,以实现高价值的生物质转化。首先,研究了不同镍掺杂水平对 LaCoO 催化反应活性的影响。在此基础上,研究了不同电石渣添加比例和反应温度对氢气产率和浓度的影响。其中,当碳化物渣的比例为 5:15 时,NiLaCo 催化剂在 600 °C 下的最大氢气产率为 553.79 mL/g,氢气体积浓度为 62.67 vol%。结果表明,制备的 NiO-LaCoO 具有优异的循环性能,十次循环后,NiLaCo 催化剂的氢气产率从 546.98 mL/g 微降至 503.94 mL/g,降幅相对较小,仅为 7.87%。特别是,热解气体中的氢浓度保持在 63.43 vol% 的高水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Editorial Board Mitochondria-targeted NIR molecular probe for detecting viscosity of gland damage and SO2 in actual samples Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in Lithium-ion batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1