Enhanced elimination of nitrate and nitrite ions from ground and surface wastewater using chitosan sphere-modified Mg-Al layered double hydroxide composite
{"title":"Enhanced elimination of nitrate and nitrite ions from ground and surface wastewater using chitosan sphere-modified Mg-Al layered double hydroxide composite","authors":"Mehak Bansal, Bonamali Pal","doi":"10.1016/j.jiec.2024.08.007","DOIUrl":null,"url":null,"abstract":"Excess nitrate and nitrite ions are harmful contaminants for groundwater and surface waters, disrupting biological balance. In this study, Mg-Al layered double hydroxide modified by chitosan spheres (CS@LDH) is used for ion adsorption and studied composites’ structural and morphological features using XRD, HR-TEM, FE-SEM, and XPS. The CS@LDH composite’s positive zeta potential (38.42 mV) and larger surface area (84.62 m/g) aid absorb negatively charged ions. With optimised 3 mg CS@LDH in 10 mL (30 mg/L) of nitrate ion concentration at optimum pH 4, the maximum adsorption capacity was 98.7 % in 90 min at 298 K. The Langmuir isotherm study indicated that nitrate ions had a maximum adsorption capacity of 2026.7 mg/g and nitrite ions 1086.8 mg/g. SEM pictures validate the heterogeneous adsorption features of CS@LDH composites. According to the pseudo-first-order kinetics model (k = 6.4 × 10 min, R 1), physisorption is the rate-limiting phase. Elovich kinetic studies show active adsorption without product desorption. Experimental and characterization investigations confirmed the CS@LDH nitrate adsorption mechanism. CS@LDH removed nitrates from real-life wastewater, and within three hours, NO was below drinking water safety levels. The combination of naturally occurring biopolymers and double-layered hydroxides in this research might remove numerous harmful pollutants from wastewater.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"266 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Excess nitrate and nitrite ions are harmful contaminants for groundwater and surface waters, disrupting biological balance. In this study, Mg-Al layered double hydroxide modified by chitosan spheres (CS@LDH) is used for ion adsorption and studied composites’ structural and morphological features using XRD, HR-TEM, FE-SEM, and XPS. The CS@LDH composite’s positive zeta potential (38.42 mV) and larger surface area (84.62 m/g) aid absorb negatively charged ions. With optimised 3 mg CS@LDH in 10 mL (30 mg/L) of nitrate ion concentration at optimum pH 4, the maximum adsorption capacity was 98.7 % in 90 min at 298 K. The Langmuir isotherm study indicated that nitrate ions had a maximum adsorption capacity of 2026.7 mg/g and nitrite ions 1086.8 mg/g. SEM pictures validate the heterogeneous adsorption features of CS@LDH composites. According to the pseudo-first-order kinetics model (k = 6.4 × 10 min, R 1), physisorption is the rate-limiting phase. Elovich kinetic studies show active adsorption without product desorption. Experimental and characterization investigations confirmed the CS@LDH nitrate adsorption mechanism. CS@LDH removed nitrates from real-life wastewater, and within three hours, NO was below drinking water safety levels. The combination of naturally occurring biopolymers and double-layered hydroxides in this research might remove numerous harmful pollutants from wastewater.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.