Deformation twinning as a displacive transformation: computational aspects of the phase-field model coupled with crystal plasticity

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-08-23 DOI:10.1007/s00466-024-02533-w
Przemysław Sadowski, Mohsen Rezaee-Hajidehi, Stanisław Stupkiewicz
{"title":"Deformation twinning as a displacive transformation: computational aspects of the phase-field model coupled with crystal plasticity","authors":"Przemysław Sadowski, Mohsen Rezaee-Hajidehi, Stanisław Stupkiewicz","doi":"10.1007/s00466-024-02533-w","DOIUrl":null,"url":null,"abstract":"<p>Spatially-resolved modeling of deformation twinning and its interaction with plastic slip is achieved by coupling the phase-field method and crystal plasticity theory. The intricate constitutive relations arising from this coupling render the resulting computational model prone to inefficiencies and lack of robustness. Accordingly, together with the inherent limitations of the phase-field method, these factors may impede the broad applicability of the model. In this paper, our recent phase-field model of coupled twinning and crystal plasticity is the subject of study. We delve into the incremental formulation and computational treatment of the model and run a thorough investigation into its computational performance. We focus specifically on evaluating the efficiency of the finite-element discretization employing various element types, and we examine the impact of mesh density. Since the micromorphic regularization is an important part of the finite-element implementation, the effect of the micromorphic regularization parameter is also studied.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"13 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02533-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially-resolved modeling of deformation twinning and its interaction with plastic slip is achieved by coupling the phase-field method and crystal plasticity theory. The intricate constitutive relations arising from this coupling render the resulting computational model prone to inefficiencies and lack of robustness. Accordingly, together with the inherent limitations of the phase-field method, these factors may impede the broad applicability of the model. In this paper, our recent phase-field model of coupled twinning and crystal plasticity is the subject of study. We delve into the incremental formulation and computational treatment of the model and run a thorough investigation into its computational performance. We focus specifically on evaluating the efficiency of the finite-element discretization employing various element types, and we examine the impact of mesh density. Since the micromorphic regularization is an important part of the finite-element implementation, the effect of the micromorphic regularization parameter is also studied.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为位移转变的变形孪晶:与晶体塑性耦合的相场模型的计算问题
通过相场方法和晶体塑性理论的耦合,实现了对变形孪晶及其与塑性滑移相互作用的空间分辨建模。这种耦合所产生的错综复杂的构成关系使得计算模型容易出现效率低下和鲁棒性不足的问题。因此,再加上相场法的固有局限性,这些因素可能会阻碍模型的广泛应用。在本文中,我们将以最新的孪晶和晶体塑性耦合相场模型为研究对象。我们深入研究了该模型的增量表述和计算处理,并对其计算性能进行了全面调查。我们特别侧重于评估采用不同元素类型的有限元离散化的效率,并研究了网格密度的影响。由于微观正则化是有限元实施的重要组成部分,因此我们还研究了微观正则化参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1