Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts

Jie Su, Fang Cai, Shu-Kuo Zhao, Xin-Yi Wang, Tian-Yi Qian, Da-Hui Wang, Bo Hong
{"title":"Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts","authors":"Jie Su, Fang Cai, Shu-Kuo Zhao, Xin-Yi Wang, Tian-Yi Qian, Da-Hui Wang, Bo Hong","doi":"arxiv-2409.02390","DOIUrl":null,"url":null,"abstract":"Uncovering the fundamental neural correlates of biological intelligence,\ndeveloping mathematical models, and conducting computational simulations are\ncritical for advancing new paradigms in artificial intelligence (AI). In this\nstudy, we implemented a comprehensive visual decision-making model that spans\nfrom visual input to behavioral output, using a neural dynamics modeling\napproach. Drawing inspiration from the key components of the dorsal visual\npathway in primates, our model not only aligns closely with human behavior but\nalso reflects neural activities in primates, and achieving accuracy comparable\nto convolutional neural networks (CNNs). Moreover, magnetic resonance imaging\n(MRI) identified key neuroimaging features such as structural connections and\nfunctional connectivity that are associated with performance in perceptual\ndecision-making tasks. A neuroimaging-informed fine-tuning approach was\nintroduced and applied to the model, leading to performance improvements that\nparalleled the behavioral variations observed among subjects. Compared to\nclassical deep learning models, our model more accurately replicates the\nbehavioral performance of biological intelligence, relying on the structural\ncharacteristics of biological neural networks rather than extensive training\ndata, and demonstrating enhanced resilience to perturbation.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncovering the fundamental neural correlates of biological intelligence, developing mathematical models, and conducting computational simulations are critical for advancing new paradigms in artificial intelligence (AI). In this study, we implemented a comprehensive visual decision-making model that spans from visual input to behavioral output, using a neural dynamics modeling approach. Drawing inspiration from the key components of the dorsal visual pathway in primates, our model not only aligns closely with human behavior but also reflects neural activities in primates, and achieving accuracy comparable to convolutional neural networks (CNNs). Moreover, magnetic resonance imaging (MRI) identified key neuroimaging features such as structural connections and functional connectivity that are associated with performance in perceptual decision-making tasks. A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements that paralleled the behavioral variations observed among subjects. Compared to classical deep learning models, our model more accurately replicates the behavioral performance of biological intelligence, relying on the structural characteristics of biological neural networks rather than extensive training data, and demonstrating enhanced resilience to perturbation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉决策的神经动力学模型:向人类专家学习
揭示生物智能的基本神经相关性、开发数学模型和进行计算模拟对于推进人工智能(AI)的新范式至关重要。在这项研究中,我们采用神经动力学建模方法,建立了一个从视觉输入到行为输出的综合视觉决策模型。我们的模型从灵长类动物背侧视觉通路的关键组成部分汲取灵感,不仅与人类行为密切相关,而且反映了灵长类动物的神经活动,其准确性可与卷积神经网络(CNN)相媲美。此外,磁共振成像(MRI)发现了结构连接和功能连接等关键神经成像特征,这些特征与感知决策任务的表现相关。我们在模型中引入并应用了神经成像信息微调方法,从而提高了模型的性能,并与受试者之间观察到的行为变化相一致。与经典的深度学习模型相比,我们的模型更准确地复制了生物智能的行为表现,依靠的是生物神经网络的结构特征,而不是大量的训练数据,并表现出更强的抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1