Statistical mechanics for networks of real neurons

Leenoy Meshulam, William Bialek
{"title":"Statistical mechanics for networks of real neurons","authors":"Leenoy Meshulam, William Bialek","doi":"arxiv-2409.00412","DOIUrl":null,"url":null,"abstract":"Perceptions and actions, thoughts and memories result from coordinated\nactivity in hundreds or even thousands of neurons in the brain. It is an old\ndream of the physics community to provide a statistical mechanics description\nfor these and other emergent phenomena of life. These aspirations appear in a\nnew light because of developments in our ability to measure the electrical\nactivity of the brain, sampling thousands of individual neurons simultaneously\nover hours or days. We review the progress that has been made in bringing\ntheory and experiment together, focusing on maximum entropy methods and a\nphenomenological renormalization group. These approaches have uncovered new,\nquantitatively reproducible collective behaviors in networks of real neurons,\nand provide examples of rich parameter--free predictions that agree in detail\nwith experiment.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perceptions and actions, thoughts and memories result from coordinated activity in hundreds or even thousands of neurons in the brain. It is an old dream of the physics community to provide a statistical mechanics description for these and other emergent phenomena of life. These aspirations appear in a new light because of developments in our ability to measure the electrical activity of the brain, sampling thousands of individual neurons simultaneously over hours or days. We review the progress that has been made in bringing theory and experiment together, focusing on maximum entropy methods and a phenomenological renormalization group. These approaches have uncovered new, quantitatively reproducible collective behaviors in networks of real neurons, and provide examples of rich parameter--free predictions that agree in detail with experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真实神经元网络的统计力学
感知和行动、思想和记忆都是大脑中成百上千个神经元协调活动的结果。为这些和其他生命现象提供统计力学描述是物理学界的一个古老梦想。由于我们测量脑电活动的能力不断发展,我们可以在数小时或数天内同时对数千个神经元进行采样,因此这些愿望有了新的曙光。我们回顾了将理论与实验结合起来所取得的进展,重点是最大熵方法和现象学重正化群。这些方法在真实神经元网络中发现了新的、可定量重现的集体行为,并提供了丰富的无参数预测实例,这些预测与实验的细节相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1