Predictive Coding with Spiking Neural Networks: a Survey

Antony W. N'dri, William Gebhardt, Céline Teulière, Fleur Zeldenrust, Rajesh P. N. Rao, Jochen Triesch, Alexander Ororbia
{"title":"Predictive Coding with Spiking Neural Networks: a Survey","authors":"Antony W. N'dri, William Gebhardt, Céline Teulière, Fleur Zeldenrust, Rajesh P. N. Rao, Jochen Triesch, Alexander Ororbia","doi":"arxiv-2409.05386","DOIUrl":null,"url":null,"abstract":"In this article, we review a class of neuro-mimetic computational models that\nwe place under the label of spiking predictive coding. Specifically, we review\nthe general framework of predictive processing in the context of neurons that\nemit discrete action potentials, i.e., spikes. Theoretically, we structure our\nsurvey around how prediction errors are represented, which results in an\norganization of historical neuromorphic generalizations that is centered around\nthree broad classes of approaches: prediction errors in explicit groups of\nerror neurons, in membrane potentials, and implicit prediction error encoding.\nFurthermore, we examine some applications of spiking predictive coding that\nutilize more energy-efficient, edge-computing hardware platforms. Finally, we\nhighlight important future directions and challenges in this emerging line of\ninquiry in brain-inspired computing. Building on the prior results of work in\ncomputational cognitive neuroscience, machine intelligence, and neuromorphic\nengineering, we hope that this review of neuromorphic formulations and\nimplementations of predictive coding will encourage and guide future research\nand development in this emerging research area.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we review a class of neuro-mimetic computational models that we place under the label of spiking predictive coding. Specifically, we review the general framework of predictive processing in the context of neurons that emit discrete action potentials, i.e., spikes. Theoretically, we structure our survey around how prediction errors are represented, which results in an organization of historical neuromorphic generalizations that is centered around three broad classes of approaches: prediction errors in explicit groups of error neurons, in membrane potentials, and implicit prediction error encoding. Furthermore, we examine some applications of spiking predictive coding that utilize more energy-efficient, edge-computing hardware platforms. Finally, we highlight important future directions and challenges in this emerging line of inquiry in brain-inspired computing. Building on the prior results of work in computational cognitive neuroscience, machine intelligence, and neuromorphic engineering, we hope that this review of neuromorphic formulations and implementations of predictive coding will encourage and guide future research and development in this emerging research area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用尖峰神经网络进行预测编码:一项调查
在本文中,我们回顾了一类神经模拟计算模型,并将其归类为尖峰预测编码。具体来说,我们回顾了在神经元发出离散动作电位(即尖峰)的背景下预测处理的一般框架。从理论上讲,我们围绕如何表示预测误差展开调查,结果是围绕三大类方法对历史上的神经形态概括进行了整理:显性错误神经元群中的预测误差、膜电位中的预测误差以及隐式预测误差编码。此外,我们还考察了尖峰预测编码的一些应用,这些应用利用了能效更高的边缘计算硬件平台。最后,我们强调了大脑启发计算这一新兴研究领域未来的重要方向和挑战。我们希望这篇关于预测编码的神经形态表述和实现的综述能鼓励和指导这一新兴研究领域的未来研究和发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1