Quantum Multimodal Contrastive Learning Framework

Chi-Sheng Chen, Aidan Hung-Wen Tsai, Sheng-Chieh Huang
{"title":"Quantum Multimodal Contrastive Learning Framework","authors":"Chi-Sheng Chen, Aidan Hung-Wen Tsai, Sheng-Chieh Huang","doi":"arxiv-2408.13919","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework for multimodal contrastive\nlearning utilizing a quantum encoder to integrate EEG (electroencephalogram)\nand image data. This groundbreaking attempt explores the integration of quantum\nencoders within the traditional multimodal learning framework. By leveraging\nthe unique properties of quantum computing, our method enhances the\nrepresentation learning capabilities, providing a robust framework for\nanalyzing time series and visual information concurrently. We demonstrate that\nthe quantum encoder effectively captures intricate patterns within EEG signals\nand image features, facilitating improved contrastive learning across\nmodalities. This work opens new avenues for integrating quantum computing with\nmultimodal data analysis, particularly in applications requiring simultaneous\ninterpretation of temporal and visual data.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel framework for multimodal contrastive learning utilizing a quantum encoder to integrate EEG (electroencephalogram) and image data. This groundbreaking attempt explores the integration of quantum encoders within the traditional multimodal learning framework. By leveraging the unique properties of quantum computing, our method enhances the representation learning capabilities, providing a robust framework for analyzing time series and visual information concurrently. We demonstrate that the quantum encoder effectively captures intricate patterns within EEG signals and image features, facilitating improved contrastive learning across modalities. This work opens new avenues for integrating quantum computing with multimodal data analysis, particularly in applications requiring simultaneous interpretation of temporal and visual data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子多模态对比学习框架
在本文中,我们提出了一种新颖的多模态对比学习框架,利用量子编码器整合脑电图(EEG)和图像数据。这一开创性尝试探索了量子编码器与传统多模态学习框架的整合。通过利用量子计算的独特特性,我们的方法增强了呈现学习能力,为同时分析时间序列和视觉信息提供了一个强大的框架。我们证明,量子编码器能有效捕捉脑电信号和图像特征中错综复杂的模式,促进跨模态对比学习的改进。这项工作为量子计算与多模态数据分析的整合开辟了新的途径,特别是在需要同时解释时间数据和视觉数据的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1