Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum)

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-09-02 DOI:10.1071/fp24114
Aiana, Hanny Chauhan, Kashmir Singh
{"title":"Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum)","authors":"Aiana, Hanny Chauhan, Kashmir Singh","doi":"10.1071/fp24114","DOIUrl":null,"url":null,"abstract":"<p>Glycoside hydrolases (GHs) are important in metabolic processes involving diverse carbohydrate-based substances found inside plant tissues. Potatoes (<i>Solanum tuberosum</i>) are rich in starchy carbohydrates, suggesting the role of GHs in their metabolic pathways. In this study, we examine the GH superfamily in potato where 366 potential GHs were identified using a similarity search method. Genes were subjected to further characterisation to gain insights into their structural composition, functional properties and distribution patterns across tissue types. Several <i>in silico</i> methodologies were also employed to investigate the physicochemical features, conserved motifs, chromosomal mapping, duplication events, syntenic links with tomato (<i>Solanum lycopersicum</i>), subcellular localisations, secondary structures and phylogenetic relationships. <i>Cis</i>-elements in <i>StGHs</i> revealed that the promoters of <i>StGHs</i> contain <i>cis</i>-elements that are responsive to phytohormones that are involved in plant growth and development, and are associated with stress responses. RNA-seq data identified significant changes in expression levels of <i>GH16, GH17</i>, <i>GH18</i>, <i>GH19</i> and <i>GH28</i> members under stress conditions. Expression patterns of several GHs were confirmed using real time quantitative PCR in response to stress. <i>StGH16.24</i> expression increased after 3 days of drought stress, whereas <i>StGH16.30</i> continuously increased under salt stress. Potential interactions between potato miRNAs and <i>StGH</i> revealed 393 and 627 interactions under drought and salt stress, respectively. Our findings offer insights into specific functions of GHs in diverse developmental stages and stress-related challenges in potato and other plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"64 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/fp24114","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glycoside hydrolases (GHs) are important in metabolic processes involving diverse carbohydrate-based substances found inside plant tissues. Potatoes (Solanum tuberosum) are rich in starchy carbohydrates, suggesting the role of GHs in their metabolic pathways. In this study, we examine the GH superfamily in potato where 366 potential GHs were identified using a similarity search method. Genes were subjected to further characterisation to gain insights into their structural composition, functional properties and distribution patterns across tissue types. Several in silico methodologies were also employed to investigate the physicochemical features, conserved motifs, chromosomal mapping, duplication events, syntenic links with tomato (Solanum lycopersicum), subcellular localisations, secondary structures and phylogenetic relationships. Cis-elements in StGHs revealed that the promoters of StGHs contain cis-elements that are responsive to phytohormones that are involved in plant growth and development, and are associated with stress responses. RNA-seq data identified significant changes in expression levels of GH16, GH17, GH18, GH19 and GH28 members under stress conditions. Expression patterns of several GHs were confirmed using real time quantitative PCR in response to stress. StGH16.24 expression increased after 3 days of drought stress, whereas StGH16.30 continuously increased under salt stress. Potential interactions between potato miRNAs and StGH revealed 393 and 627 interactions under drought and salt stress, respectively. Our findings offer insights into specific functions of GHs in diverse developmental stages and stress-related challenges in potato and other plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示糖苷水解酶在应对马铃薯(Solanum tuberosum)干旱和盐胁迫中的不同作用
糖苷水解酶(GHs)在涉及植物组织内各种基于碳水化合物的物质的代谢过程中非常重要。马铃薯(Solanum tuberosum)富含淀粉类碳水化合物,这表明 GHs 在其代谢途径中发挥作用。在本研究中,我们研究了马铃薯中的 GH 超家族,通过相似性搜索方法确定了 366 个潜在的 GHs。对基因进行了进一步表征,以深入了解它们的结构组成、功能特性和在不同组织类型中的分布模式。此外还采用了几种硅学方法来研究理化特征、保守基序、染色体图谱、复制事件、与番茄(Solanum lycopersicum)的同源联系、亚细胞定位、二级结构和系统发育关系。StGHs中的顺式元件显示,StGHs的启动子含有顺式元件,这些元件对植物生长和发育过程中的植物激素有反应,并与胁迫反应有关。RNA-seq数据发现,在胁迫条件下,GH16、GH17、GH18、GH19和GH28成员的表达水平发生了显著变化。利用实时定量聚合酶链式反应(real time quantitative PCR)确认了几种 GHs 在胁迫下的表达模式。StGH16.24的表达在干旱胁迫3天后增加,而StGH16.30在盐胁迫下持续增加。在干旱和盐胁迫下,马铃薯miRNA与StGH之间的潜在相互作用分别为393次和627次。我们的研究结果为了解 GHs 在马铃薯和其他植物的不同发育阶段和胁迫相关挑战中的特定功能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Overexpression of AtNHX1 increases leaf potassium content by improving enrichment capacity in tobacco (Nicotiana tabacum) roots. Exogenous nitric oxide extends longevity in cut Lilium tigrinum flowers by orchestrating biochemical and molecular aspects. Overexpression of HvVDE gene improved light protection in transgenic tobacco (Nicotiana tabacum). High-throughput phenotyping of soybean (Glycine max) transpiration response curves to rising atmospheric drying in a mapping population. Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (Manihot esculenta) subjected to variable high light conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1