Experimental Investigation of Drain Noise in High Electron Mobility Transistors: Thermal and Hot Electron Noise

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-09-11 DOI:10.1109/TED.2024.3445889
Bekari Gabritchidze;Justin H. Chen;Kieran A. Cleary;Anthony C. Readhead;Austin J. Minnich
{"title":"Experimental Investigation of Drain Noise in High Electron Mobility Transistors: Thermal and Hot Electron Noise","authors":"Bekari Gabritchidze;Justin H. Chen;Kieran A. Cleary;Anthony C. Readhead;Austin J. Minnich","doi":"10.1109/TED.2024.3445889","DOIUrl":null,"url":null,"abstract":"We report the on-wafer characterization of \n<italic>S</i>\n-parameters and microwave noise temperature (\n<inline-formula> <tex-math>${T}_{{50}}$ </tex-math></inline-formula>\n) of discrete metamorphic InGaAs high electron mobility transistors (mHEMTs) at 40 and 300 K and over a range of drain-source voltages (\n<inline-formula> <tex-math>${V}_{\\text {DS}}$ </tex-math></inline-formula>\n). From these data, we extract a small-signal model (SSM) and the drain (output) noise current power spectral density (\n<inline-formula> <tex-math>${S}_{{id}}$ </tex-math></inline-formula>\n) at each bias and temperature. This procedure enables \n<inline-formula> <tex-math>${S}_{{id}}$ </tex-math></inline-formula>\n to be obtained while accounting for the variation of SSM, noise impedance match, and other parameters under the various conditions. We find that the noise associated with the channel conductance can only account for a portion of the measured output noise. Considering the variation of output noise with physical temperature and bias and prior studies of microwave noise in quantum wells, we hypothesize that a hot electron noise source (NS) based on real-space transfer (RST) of electrons from the channel to the barrier could account for the remaining portion of \n<inline-formula> <tex-math>${S}_{{id}}$ </tex-math></inline-formula>\n. We suggest further studies to gain insights into the physical mechanisms. Finally, we calculate that the minimum HEMT noise temperature could be reduced by up to ~50% and ~30% at cryogenic temperature and room temperature, respectively, if the hot electron noise were suppressed.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10678926/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We report the on-wafer characterization of S -parameters and microwave noise temperature ( ${T}_{{50}}$ ) of discrete metamorphic InGaAs high electron mobility transistors (mHEMTs) at 40 and 300 K and over a range of drain-source voltages ( ${V}_{\text {DS}}$ ). From these data, we extract a small-signal model (SSM) and the drain (output) noise current power spectral density ( ${S}_{{id}}$ ) at each bias and temperature. This procedure enables ${S}_{{id}}$ to be obtained while accounting for the variation of SSM, noise impedance match, and other parameters under the various conditions. We find that the noise associated with the channel conductance can only account for a portion of the measured output noise. Considering the variation of output noise with physical temperature and bias and prior studies of microwave noise in quantum wells, we hypothesize that a hot electron noise source (NS) based on real-space transfer (RST) of electrons from the channel to the barrier could account for the remaining portion of ${S}_{{id}}$ . We suggest further studies to gain insights into the physical mechanisms. Finally, we calculate that the minimum HEMT noise temperature could be reduced by up to ~50% and ~30% at cryogenic temperature and room temperature, respectively, if the hot electron noise were suppressed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高电子迁移率晶体管漏极噪声的实验研究:热噪声和热电子噪声
我们报告了在 40 K 和 300 K 以及一定范围的漏极-源极电压 ( ${V}_{text\ {DS}}$ ) 下,对离散变质 InGaAs 高电子迁移率晶体管 (mHEMT) 的 S 参数和微波噪声温度 ( ${T}_{50}}$ ) 进行的晶圆上表征。从这些数据中,我们提取了小信号模型 (SSM) 以及每个偏置和温度下的漏极(输出)噪声电流功率谱密度 ( ${S}_{id}}$ )。通过这一过程,我们可以获得{S}_{id}}$,同时考虑到 SSM、噪声阻抗匹配和其他参数在不同条件下的变化。我们发现,与通道电导相关的噪声只能占测量输出噪声的一部分。考虑到输出噪声随物理温度和偏压的变化,以及之前对量子阱中微波噪声的研究,我们假设基于电子从沟道到势垒的实空间转移(RST)的热电子噪声源(NS)可以解释 ${S}_{id}}$ 的剩余部分。我们建议进一步研究以深入了解物理机制。最后,我们计算出,如果热电子噪声得到抑制,在低温和室温下,HEMT 的最低噪声温度可分别降低约 50% 和 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1