Extending Electrostatic Modeling for Schottky p-GaN Gate HEMTs: Uniform and Engineered p-GaN Doping

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-26 DOI:10.1109/TED.2024.3446488
Mojtaba Alaei;Matteo Borga;Elena Fabris;Stefaan Decoutere;Johan Lauwaert;Benoit Bakeroot
{"title":"Extending Electrostatic Modeling for Schottky p-GaN Gate HEMTs: Uniform and Engineered p-GaN Doping","authors":"Mojtaba Alaei;Matteo Borga;Elena Fabris;Stefaan Decoutere;Johan Lauwaert;Benoit Bakeroot","doi":"10.1109/TED.2024.3446488","DOIUrl":null,"url":null,"abstract":"This article presents a comprehensive analytical framework for modeling p-GaN gate high-electronmobility transistors (HEMTs) based on rigorous solution of the Poisson and Schrödinger equations. It focuses primarily on the calculation of the 2-D electron gas (2DEG), voltage variation across the junction (\n<inline-formula> <tex-math>$\\Delta V_j$ </tex-math></inline-formula>\n), and AIGaN barrier (\n<inline-formula> <tex-math>$\\Delta V_b$ </tex-math></inline-formula>\n) for the entire range of forward gate bias until gate breakdown. Our model considers the impact of AIGaN barrier height saturation. In addition, we demonstrate our model with the engineered p-GaN doping profile that yields higher forward gate breakdown voltages. Gate capacitance and breakdown voltage have been modeled for both uniform and engineered p-GaN doping profiles. The viability and accuracy of the proposed model are demonstrated through comparisons with empirical measurement data and TCAD simulations.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 10","pages":"5949-5955"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648585","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648585/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a comprehensive analytical framework for modeling p-GaN gate high-electronmobility transistors (HEMTs) based on rigorous solution of the Poisson and Schrödinger equations. It focuses primarily on the calculation of the 2-D electron gas (2DEG), voltage variation across the junction ( $\Delta V_j$ ), and AIGaN barrier ( $\Delta V_b$ ) for the entire range of forward gate bias until gate breakdown. Our model considers the impact of AIGaN barrier height saturation. In addition, we demonstrate our model with the engineered p-GaN doping profile that yields higher forward gate breakdown voltages. Gate capacitance and breakdown voltage have been modeled for both uniform and engineered p-GaN doping profiles. The viability and accuracy of the proposed model are demonstrated through comparisons with empirical measurement data and TCAD simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展肖特基 p-GaN 栅极 HEMT 的静电建模:对氮化镓的均匀掺杂和工程掺杂
本文基于对泊松方程和薛定谔方程的严格求解,提出了对氮化镓栅高电子迁移率晶体管(HEMT)建模的综合分析框架。它主要侧重于计算二维电子气体(2DEG)、结点电压变化($\Delta V_j$)和氮化镓势垒($\Delta V_b$)在整个正向栅极偏压范围内直至栅极击穿的情况。我们的模型考虑了 AIGaN 势垒高度饱和的影响。此外,我们还利用工程设计的 p-GaN 掺杂曲线演示了我们的模型,该曲线能产生更高的正向栅极击穿电压。对均匀和工程 p-GaN 掺杂曲线的栅极电容和击穿电压都进行了建模。通过与经验测量数据和 TCAD 仿真的比较,证明了所提模型的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
IEEE Transactions on Electron Devices Information for Authors Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications IEEE Transactions on Electron Devices Information for Authors Impact of Size Scaling in Cryogenic InGaAs/InP HEMTs for Low-Noise and High-Frequency Performance Operation and Design of Dirac-Source FETs Using Ab Initio Transport Simulations: Subthreshold Swing and Drive Current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1