Comprehensive Characterization Method for Modeling Retention Transients in NAND Flash Memory

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-22 DOI:10.1109/TED.2024.3442984
Wen-Chien Liu;Yung-Yueh Chiu;Toshiaki Takeshita;Riichiro Shirota
{"title":"Comprehensive Characterization Method for Modeling Retention Transients in NAND Flash Memory","authors":"Wen-Chien Liu;Yung-Yueh Chiu;Toshiaki Takeshita;Riichiro Shirota","doi":"10.1109/TED.2024.3442984","DOIUrl":null,"url":null,"abstract":"A comprehensive characterization method and a physically based model for profiling the evolution of the trapped oxide charge (\n<inline-formula> <tex-math>${Q}_{T}\\text {)}$ </tex-math></inline-formula>\n during data retention (high-temperature baking after program/erase (P/E) cycling) was developed. This method involves monitoring the transients of threshold-voltage (\n<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula>\n shift and transconductance (\n<inline-formula> <tex-math>${G}_{m}\\text {)}$ </tex-math></inline-formula>\n recovery simultaneously. It is observed that the scatter relation between \n<inline-formula> <tex-math>${G}_{m}$ </tex-math></inline-formula>\n recovery and the corresponding \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n reduction for different baking temperatures can be effectively merged over a universal curve. This curve consists of two stages. In the first stage of retention, \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n decreases but \n<inline-formula> <tex-math>${G}_{m}$ </tex-math></inline-formula>\n remains almost constant. In the subsequent stage, \n<inline-formula> <tex-math>${G}_{m}$ </tex-math></inline-formula>\n increases in proportion to the decrease in \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n. To describe this characteristic, two different \n<inline-formula> <tex-math>${Q}_{T}$ </tex-math></inline-formula>\n distribution regions were indispensably introduced; one is a near-interfacial (NI) region close to the Si surface and the other is a bulk oxide (BO) region. During retention, \n<inline-formula> <tex-math>${Q}_{T}$ </tex-math></inline-formula>\n in the NI region tunnels out, and simultaneously \n<inline-formula> <tex-math>${Q}_{T}$ </tex-math></inline-formula>\n in the BO region supplements it via transport mechanisms. The transition point between the first and second stages occurs when all the \n<inline-formula> <tex-math>${Q}_{T}$ </tex-math></inline-formula>\n in the BO region dissipated. Results show good agreement between measured and simulated retention transients.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643495/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive characterization method and a physically based model for profiling the evolution of the trapped oxide charge ( ${Q}_{T}\text {)}$ during data retention (high-temperature baking after program/erase (P/E) cycling) was developed. This method involves monitoring the transients of threshold-voltage ( ${V}_{\text {th}}\text {)}$ shift and transconductance ( ${G}_{m}\text {)}$ recovery simultaneously. It is observed that the scatter relation between ${G}_{m}$ recovery and the corresponding ${V}_{\text {th}}$ reduction for different baking temperatures can be effectively merged over a universal curve. This curve consists of two stages. In the first stage of retention, ${V}_{\text {th}}$ decreases but ${G}_{m}$ remains almost constant. In the subsequent stage, ${G}_{m}$ increases in proportion to the decrease in ${V}_{\text {th}}$ . To describe this characteristic, two different ${Q}_{T}$ distribution regions were indispensably introduced; one is a near-interfacial (NI) region close to the Si surface and the other is a bulk oxide (BO) region. During retention, ${Q}_{T}$ in the NI region tunnels out, and simultaneously ${Q}_{T}$ in the BO region supplements it via transport mechanisms. The transition point between the first and second stages occurs when all the ${Q}_{T}$ in the BO region dissipated. Results show good agreement between measured and simulated retention transients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NAND 闪存中保持瞬态建模的综合表征方法
我们开发了一种全面的表征方法和一个基于物理的模型,用于剖析数据保留(编程/擦除(P/E)循环后的高温烘烤)过程中被困氧化物电荷(${Q}_{T}\text {)}$的演变。这种方法包括同时监测阈值电压(${V}_{text {th}\text {)}$ 移动和跨导(${G}_{m}\text {)}$ 恢复的瞬态。据观察,不同烘烤温度下的 ${G}_{m}$ 恢复和相应的 ${V}_{text {th}}$ 降低之间的散点关系可以有效地合并成一条通用曲线。这条曲线包括两个阶段。在第一保留阶段,${V}_{text {th}}$ 下降,但 ${G}_{m}$ 几乎保持不变。在随后的阶段,${G}_{m}$ 的增加与 ${V}_{text {th}}$ 的减少成正比。为了描述这一特性,我们不可或缺地引入了两个不同的 ${Q}_{T}$ 分布区域:一个是靠近硅表面的近界面 (NI) 区域,另一个是块状氧化物 (BO) 区域。在保留过程中,NI 区域的 ${Q}_{T}$ 会隧穿出去,同时 BO 区域的 ${Q}_{T}$ 会通过传输机制补充进来。当 BO 区域中的 ${Q}_{T}$ 全部耗散时,就是第一阶段和第二阶段的转换点。结果表明,测量和模拟的滞留瞬态之间具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1