{"title":"On the Transformation of Memory-Less Non-linear Components into Memristors","authors":"Kapil Bhardwaj, Mayank Srivastava","doi":"10.1007/s00034-024-02828-6","DOIUrl":null,"url":null,"abstract":"<p>The passive non-linear components, such as capacitors and inductors, lack inherent memory, thus limiting their applications to circuit functions like chaotic oscillators and waveform generators. In this research, it has been explored that these non-linear capacitors/inductors (NLC/I) may be transformed into functional memelements through appropriate modifications to the circuit configuration. Along with this motivation, it has been determined that achieving a universal emulator capable of replicating all three memelements with just a single alteration at a specific port is impractical. In such scenarios, at least one of the realized elements will inevitably retain characteristics of NLC or NLI. To address this challenge, proposed mutators have been developed to convert these unwantedly occurring NLC/I into functional memelements like flux-controlled memristor or charge-controlled memristor, which are valuable for memristive applications. Moreover, the proposed circuits are characterized by a compact design and utilize readily available off-the-shelf components. PSPICE-generated simulation results effectively illustrate the operational behavior of the memristors derived from mutations of NLC/I simulators. The simulation results are further validated through commercial ICs based implementation and experimental findings are depicted.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"94 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02828-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The passive non-linear components, such as capacitors and inductors, lack inherent memory, thus limiting their applications to circuit functions like chaotic oscillators and waveform generators. In this research, it has been explored that these non-linear capacitors/inductors (NLC/I) may be transformed into functional memelements through appropriate modifications to the circuit configuration. Along with this motivation, it has been determined that achieving a universal emulator capable of replicating all three memelements with just a single alteration at a specific port is impractical. In such scenarios, at least one of the realized elements will inevitably retain characteristics of NLC or NLI. To address this challenge, proposed mutators have been developed to convert these unwantedly occurring NLC/I into functional memelements like flux-controlled memristor or charge-controlled memristor, which are valuable for memristive applications. Moreover, the proposed circuits are characterized by a compact design and utilize readily available off-the-shelf components. PSPICE-generated simulation results effectively illustrate the operational behavior of the memristors derived from mutations of NLC/I simulators. The simulation results are further validated through commercial ICs based implementation and experimental findings are depicted.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.