Vladimir L. Gavrikov, Ruslan A. Sharafutdinov, Alexey I. Fertikov, Eugene A. Vaganov
{"title":"Properties of ions may explain elemental stoichiometry in late- and early-wood: a case study in Scots pine tree rings","authors":"Vladimir L. Gavrikov, Ruslan A. Sharafutdinov, Alexey I. Fertikov, Eugene A. Vaganov","doi":"10.1007/s11676-024-01779-7","DOIUrl":null,"url":null,"abstract":"<p>Understanding why elements are distributed in tree xylem in a particular way is a significant challenge in dendrochemistry. This study explored a hypothesis that metal elements in the xylem interact due to differences in physical properties such as ionic radius and ionization potential. Scots pine in an even-aged stand established during the early 1970s in eastern Siberia was the study species. Increment cores were taken from the north and south sides of trees and scanned with an X-ray fluorescent multi scanner. With the help of X-ray scanning, the following elements were analyzed: aluminum (Al), potassium (K), calcium (Ca), titanium (Ti), manganese (Mn), iron (Fe), copper (Cu), strontium (Sr) and zinc (Zn). Scanning data on the elements were split into early-wood and late-wood data for each year of growth. The following ratios were analyzed: Ca/Sr, Fe/Ca, Fe/Sr, Al/Cu, Al/Zn, Ti/Mn, and Mn/K. Among these, ones having a consistent pattern across tree rings, the ratios show a more or less dependable relationship: that an element shows a larger decrease (relative another element) that has a larger ionic radius and lower ionization potential. Hypothetically, this may be due to the advantage of an ion with smaller ionic radius and higher ionization potential under a deficit of accommodation centers in organic molecules. An experiment approach should be applied to clarify the relationships.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"59 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01779-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding why elements are distributed in tree xylem in a particular way is a significant challenge in dendrochemistry. This study explored a hypothesis that metal elements in the xylem interact due to differences in physical properties such as ionic radius and ionization potential. Scots pine in an even-aged stand established during the early 1970s in eastern Siberia was the study species. Increment cores were taken from the north and south sides of trees and scanned with an X-ray fluorescent multi scanner. With the help of X-ray scanning, the following elements were analyzed: aluminum (Al), potassium (K), calcium (Ca), titanium (Ti), manganese (Mn), iron (Fe), copper (Cu), strontium (Sr) and zinc (Zn). Scanning data on the elements were split into early-wood and late-wood data for each year of growth. The following ratios were analyzed: Ca/Sr, Fe/Ca, Fe/Sr, Al/Cu, Al/Zn, Ti/Mn, and Mn/K. Among these, ones having a consistent pattern across tree rings, the ratios show a more or less dependable relationship: that an element shows a larger decrease (relative another element) that has a larger ionic radius and lower ionization potential. Hypothetically, this may be due to the advantage of an ion with smaller ionic radius and higher ionization potential under a deficit of accommodation centers in organic molecules. An experiment approach should be applied to clarify the relationships.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.