8.36% Efficient CZTS Solar Cells on Transparent Electrode via Solution Processing

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-09-11 DOI:10.1002/solr.202400588
Hongkun Liu, Yize Li, Aoqi Xu, Xinyu Li, Chunxu Xiang, Sifan Zhou, Shaoying Wang, Weibo Yan, Hao Xin
{"title":"8.36% Efficient CZTS Solar Cells on Transparent Electrode via Solution Processing","authors":"Hongkun Liu,&nbsp;Yize Li,&nbsp;Aoqi Xu,&nbsp;Xinyu Li,&nbsp;Chunxu Xiang,&nbsp;Sifan Zhou,&nbsp;Shaoying Wang,&nbsp;Weibo Yan,&nbsp;Hao Xin","doi":"10.1002/solr.202400588","DOIUrl":null,"url":null,"abstract":"<p>High-bandgap Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) thin film solar cells on transparent electrodes show favorable characteristics for new photovoltaic application scenarios including building-integrated photovoltaics, vehicle-integrated photovoltaics, and top cell for tandem structure. However, the efficiency of pure sulfide kesterite CZTS thin film solar cells on transparent substrates lags behind that on traditional Mo substrates. Herein, fabrication of high-quality CZTS absorber films and efficient solar cells on fluorine-doped tin oxide substrates from dimethyl sulfoxide solution is reported. The formation of harmful secondary phases in CZTS film is suppressed by simply adjusting the chemical stoichiometry in the precursor solution, leading to the development of 5.88% CZTS solar cells. Sodium (Na) doping further promotes grain growth and suppresses secondary phase, contributing to the reduced interface recombination and improved device performance. A champion device with an efficiency of 8.36% has been achieved with 1% Na doping, underscoring the significance of the solution process in achieving highly efficient kesterite solar cells on transparent electrodes.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 21","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400588","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-bandgap Cu2ZnSnS4 (CZTS) thin film solar cells on transparent electrodes show favorable characteristics for new photovoltaic application scenarios including building-integrated photovoltaics, vehicle-integrated photovoltaics, and top cell for tandem structure. However, the efficiency of pure sulfide kesterite CZTS thin film solar cells on transparent substrates lags behind that on traditional Mo substrates. Herein, fabrication of high-quality CZTS absorber films and efficient solar cells on fluorine-doped tin oxide substrates from dimethyl sulfoxide solution is reported. The formation of harmful secondary phases in CZTS film is suppressed by simply adjusting the chemical stoichiometry in the precursor solution, leading to the development of 5.88% CZTS solar cells. Sodium (Na) doping further promotes grain growth and suppresses secondary phase, contributing to the reduced interface recombination and improved device performance. A champion device with an efficiency of 8.36% has been achieved with 1% Na doping, underscoring the significance of the solution process in achieving highly efficient kesterite solar cells on transparent electrodes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过溶液工艺在透明电极上实现 8.36% 效率的 CZTS 太阳能电池
透明电极上的高带隙 Cu2ZnSnS4(CZTS)薄膜太阳能电池在新的光伏应用场景(包括光伏建筑一体化、光伏车载一体化以及串联结构的顶层电池)中显示出良好的特性。然而,透明衬底上的纯硫化物钾长石 CZTS 薄膜太阳能电池的效率落后于传统钼衬底。本文报告了利用二甲基亚砜溶液在掺氟氧化锡基底上制备高质量 CZTS 吸收薄膜和高效太阳能电池的情况。只需调整前驱体溶液中的化学计量,就能抑制 CZTS 薄膜中有害次生相的形成,从而开发出 5.88% 的 CZTS 太阳能电池。钠(Na)掺杂进一步促进了晶粒生长并抑制了次生相,从而减少了界面重组并提高了器件性能。在掺杂 1% Na 的情况下,实现了效率为 8.36% 的冠军器件,这突出表明了溶液工艺在实现透明电极上的高效钾长石太阳能电池方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1