Heterovalent Samarium Cation-Doped SnO2 Electron Transport Layer for High-Efficiency Planar Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-09-10 DOI:10.1002/solr.202400496
Abdul Sattar, Chenzhe Xu, Feiyu Cheng, Haochun Sun, Hongwei Wang, Liyan Hu, Wenqiang Fan, Zhuo Kang, Yue Zhang
{"title":"Heterovalent Samarium Cation-Doped SnO2 Electron Transport Layer for High-Efficiency Planar Perovskite Solar Cells","authors":"Abdul Sattar,&nbsp;Chenzhe Xu,&nbsp;Feiyu Cheng,&nbsp;Haochun Sun,&nbsp;Hongwei Wang,&nbsp;Liyan Hu,&nbsp;Wenqiang Fan,&nbsp;Zhuo Kang,&nbsp;Yue Zhang","doi":"10.1002/solr.202400496","DOIUrl":null,"url":null,"abstract":"<p>Tin oxide (SnO<sub>2</sub>) has demonstrated significant potential as an electron transport layer (ETL) owing to its low-temperature processing in perovskite solar cells (PSCs). However, the poor energy-level alignment and the presence of interface defects between the SnO<sub>2</sub> and perovskite layer aggravate the power conversion efficiency (PCE) of the PSCs. Herein, heterovalent samarium cation (Sm<sup>3+</sup>) is deliberately doped into SnO<sub>2</sub>, optimizing the energy-level alignment between SnO<sub>2</sub> and the perovskite layer, and effectively passivating the oxygen vacancy defects on the surface of SnO<sub>2</sub>. Experimental and theoretical conclusions reveal that Sm-doping successfully passivates the defects in the ETL and improves the perovskite crystal quality, thereby reducing interface charge recombination, and enhancing electron extraction from perovskite to the SnO<sub>2</sub> layer. Consequently, the optimized Sm-doped SnO<sub>2</sub>-based PSCs achieve a PCE of 24.10% with a <i>V</i><sub>OC</sub> of 1.174 V, negligible hysteresis, and improved durability under ambient conditions.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400496","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Tin oxide (SnO2) has demonstrated significant potential as an electron transport layer (ETL) owing to its low-temperature processing in perovskite solar cells (PSCs). However, the poor energy-level alignment and the presence of interface defects between the SnO2 and perovskite layer aggravate the power conversion efficiency (PCE) of the PSCs. Herein, heterovalent samarium cation (Sm3+) is deliberately doped into SnO2, optimizing the energy-level alignment between SnO2 and the perovskite layer, and effectively passivating the oxygen vacancy defects on the surface of SnO2. Experimental and theoretical conclusions reveal that Sm-doping successfully passivates the defects in the ETL and improves the perovskite crystal quality, thereby reducing interface charge recombination, and enhancing electron extraction from perovskite to the SnO2 layer. Consequently, the optimized Sm-doped SnO2-based PSCs achieve a PCE of 24.10% with a VOC of 1.174 V, negligible hysteresis, and improved durability under ambient conditions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效平面过氧化物太阳能电池的异价钐阳离子掺杂 SnO2 电子传输层
氧化锡(SnO2)作为电子传输层(ETL)具有巨大的潜力,因为它可以在过氧化物太阳能电池(PSCs)中进行低温加工。然而,二氧化锡和过氧化物层之间的能级一致性差和界面缺陷的存在会降低 PSCs 的功率转换效率(PCE)。在此,特意在二氧化锡中掺入了异价钐阳离子(Sm3+),从而优化了二氧化锡与包晶层之间的能级排列,并有效地钝化了二氧化锡表面的氧空位缺陷。实验和理论结论表明,Sm 掺杂成功地钝化了 ETL 中的缺陷,提高了包晶的晶体质量,从而减少了界面电荷重组,增强了从包晶到 SnO2 层的电子萃取。因此,经过优化的掺杂钐的二氧化锡基 PSC 在环境条件下的 PCE 达到 24.10%,VOC 为 1.174 V,滞后可以忽略不计,耐久性也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1