Huan Zhao, Zhipeng Yin, Lijun Chen, Yunjie Li, Beining Wang, Hangxing Sun, Junhao Song, Xunwen Xiao, Ning Li, Hai-Qiao Wang
{"title":"Nonhalogenated Photoactive Layer PBDB-T:BTP-M-Based Organic Solar Cells with Efficient and Stable Performance","authors":"Huan Zhao, Zhipeng Yin, Lijun Chen, Yunjie Li, Beining Wang, Hangxing Sun, Junhao Song, Xunwen Xiao, Ning Li, Hai-Qiao Wang","doi":"10.1002/solr.202400542","DOIUrl":null,"url":null,"abstract":"<p>While state-of-the-art organic photovoltaics (OPVs) have been achieved by halogen modification strategies for active layer materials, the stability of these OPVs can be compromised by the presence of halogen ions at the interface and within the photoactive layer. Herein, halogen-free photoactive layer-based OPV cells are fabricated and systematically studied to understand and explore the working principle and potential of this class of OPV devices. For the first time, a champion efficiency of 13.12% is achieved for the inverted device (ITO/AZO/AL/MoO<sub>3</sub>/Ag) based on the nonhalogenated photoactive layer PBDB-T:BTP-M. Superior metal electrode stability is confirmed for the unencapsulated PBDB-T:BTP-M devices aged at 85 °C in the air atmosphere compared to the halogenated PM6:Y6 devices. Specifically, better thermal stability is verified for the nonhalogenated device without 1-chloronaphthalene (1-CN) additive compared to the device with 1-CN additive, with 89% of the initial efficiency retained after being aged for 900 h at 85 °C in the N<sub>2</sub> atmosphere. These results evidence the halogen/halide impacts on device stability and demonstrate the potential for nonhalogenated OPVs to achieve efficient and stable performance, benefiting the development and practical application of this technology.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400542","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
While state-of-the-art organic photovoltaics (OPVs) have been achieved by halogen modification strategies for active layer materials, the stability of these OPVs can be compromised by the presence of halogen ions at the interface and within the photoactive layer. Herein, halogen-free photoactive layer-based OPV cells are fabricated and systematically studied to understand and explore the working principle and potential of this class of OPV devices. For the first time, a champion efficiency of 13.12% is achieved for the inverted device (ITO/AZO/AL/MoO3/Ag) based on the nonhalogenated photoactive layer PBDB-T:BTP-M. Superior metal electrode stability is confirmed for the unencapsulated PBDB-T:BTP-M devices aged at 85 °C in the air atmosphere compared to the halogenated PM6:Y6 devices. Specifically, better thermal stability is verified for the nonhalogenated device without 1-chloronaphthalene (1-CN) additive compared to the device with 1-CN additive, with 89% of the initial efficiency retained after being aged for 900 h at 85 °C in the N2 atmosphere. These results evidence the halogen/halide impacts on device stability and demonstrate the potential for nonhalogenated OPVs to achieve efficient and stable performance, benefiting the development and practical application of this technology.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.