{"title":"In Situ Photoelectrochemical-Induced Surface Reconstruction of BiVO4 Photoanodes for Solar Fuel Production","authors":"Zhiyuan Cao, Xianyin Song, Xin Chen, Xuefeng Sha, Jiu Tang, Zhihai Yang, Yawei Lv, Changzhong Jiang","doi":"10.1002/solr.202400523","DOIUrl":null,"url":null,"abstract":"<p>BiVO<sub>4</sub> has been widely concerned due to its great potential in photoelectrochemical (PEC) water splitting. However, low carrier mobilities and high recombination efficiency of photogenerated carriers impede its photocatalytic performance. Herein, an in situ PEC cyclic-voltammetry-induced surface reconstruction of BiVO<sub>4</sub> photoanodes (BVO pristine) is developed with significantly enhanced efficiency for solar water splitting. A series of in situ characterizations (including in situ X-ray diffraction, in situ Raman), together with electrochemical tests and density-functional theory calculations, reveal that during the photoelectrical activation process, the BVO pristine surfaces undergo a crystal plane reconstruction with greatly increased {040} crystal face to promote the separation of photogenerated carriers. In addition, abundant vanadium vacancies and oxygen vacancies are also introduced into the BiVO<sub>4</sub> surface during the crystal face reconstruction process with more favorable surface water adsorption and increased injection efficiency of photogenerated carriers. Therefore, the charge-transfer resistance (<i>R</i><sub>ct</sub>) between BVO pristine and electrolyte under AM 1.5G illumination substantially reduced from the original 15 200 to 2820 Ω after the activation. Moreover, the photocurrent density of activated BVO pristines increases more than 12 times, relative to the original BiVO<sub>4</sub>. In this work, a new horizon for in situ photoelectric activation of semiconductor photoelectrodes with significantly enhanced PEC water splitting is provided.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400523","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
BiVO4 has been widely concerned due to its great potential in photoelectrochemical (PEC) water splitting. However, low carrier mobilities and high recombination efficiency of photogenerated carriers impede its photocatalytic performance. Herein, an in situ PEC cyclic-voltammetry-induced surface reconstruction of BiVO4 photoanodes (BVO pristine) is developed with significantly enhanced efficiency for solar water splitting. A series of in situ characterizations (including in situ X-ray diffraction, in situ Raman), together with electrochemical tests and density-functional theory calculations, reveal that during the photoelectrical activation process, the BVO pristine surfaces undergo a crystal plane reconstruction with greatly increased {040} crystal face to promote the separation of photogenerated carriers. In addition, abundant vanadium vacancies and oxygen vacancies are also introduced into the BiVO4 surface during the crystal face reconstruction process with more favorable surface water adsorption and increased injection efficiency of photogenerated carriers. Therefore, the charge-transfer resistance (Rct) between BVO pristine and electrolyte under AM 1.5G illumination substantially reduced from the original 15 200 to 2820 Ω after the activation. Moreover, the photocurrent density of activated BVO pristines increases more than 12 times, relative to the original BiVO4. In this work, a new horizon for in situ photoelectric activation of semiconductor photoelectrodes with significantly enhanced PEC water splitting is provided.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.