Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-09-06 DOI:10.1002/solr.202400521
Xiaoni Zhao, Jiali Cao, Ting Nie, Shengzhong (Frank) Liu, Zhimin Fang
{"title":"Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells","authors":"Xiaoni Zhao,&nbsp;Jiali Cao,&nbsp;Ting Nie,&nbsp;Shengzhong (Frank) Liu,&nbsp;Zhimin Fang","doi":"10.1002/solr.202400521","DOIUrl":null,"url":null,"abstract":"<p>Large voltage deficit and photoinduced halide segregation are the two primary challenges that hinder the advancement of wide-bandgap (WBG) (<i>E</i><sub>g</sub> ≥ 1.65 eV) perovskite solar cells (PSCs). Herein, a cation engineering approach to enhance the optoelectronic properties of formamidine–cesium (FA-Cs) WBG perovskites by incorporating methylamine (MA) as the third cation is presented. Three perovskite species with a bandgap of 1.68 eV, abbreviated as Cs<sub>0.05</sub>, Cs<sub>0.15</sub>, and Cs<sub>0.25</sub>, are systematically studied by optimizing the MA content. The incorporation of MA is found to effectively enhance the crystallinity and improve the carrier lifetimes of the three perovskite species. Moreover, the microstrain in the FA-MA-Cs perovskite films is significantly reduced due to the buffer effect of MA between the size-mismatched FA and Cs, a benefit derived from the cascade cation design. The optimized compositions for the three species are Cs<sub>0.05</sub>MA<sub>0.2</sub>FA<sub>0.75</sub>PbI<sub>2.58</sub>Br<sub>0.42</sub>, Cs<sub>0.15</sub>MA<sub>0.1</sub>FA<sub>0.75</sub>PbI<sub>2.68</sub>Br<sub>0.32</sub>, and Cs<sub>0.25</sub>MA<sub>0.03</sub>FA<sub>0.72</sub>PbI<sub>2.73</sub>Br<sub>0.27</sub>, respectively. Among these, Cs<sub>0.25</sub>MA<sub>0.03</sub>FA<sub>0.72</sub>PbI<sub>2.73</sub>Br<sub>0.27</sub> perovskite stands out due to its high crystallinity, low microstrain, and low trap density, giving rise to the highest efficiency of 20.64% with the lowest voltage loss. This perovskite also exhibits superior air, light, and thermal stability. These findings underscore the importance of rational cation design in achieving efficient and photostable WBG PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 20","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400521","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Large voltage deficit and photoinduced halide segregation are the two primary challenges that hinder the advancement of wide-bandgap (WBG) (Eg ≥ 1.65 eV) perovskite solar cells (PSCs). Herein, a cation engineering approach to enhance the optoelectronic properties of formamidine–cesium (FA-Cs) WBG perovskites by incorporating methylamine (MA) as the third cation is presented. Three perovskite species with a bandgap of 1.68 eV, abbreviated as Cs0.05, Cs0.15, and Cs0.25, are systematically studied by optimizing the MA content. The incorporation of MA is found to effectively enhance the crystallinity and improve the carrier lifetimes of the three perovskite species. Moreover, the microstrain in the FA-MA-Cs perovskite films is significantly reduced due to the buffer effect of MA between the size-mismatched FA and Cs, a benefit derived from the cascade cation design. The optimized compositions for the three species are Cs0.05MA0.2FA0.75PbI2.58Br0.42, Cs0.15MA0.1FA0.75PbI2.68Br0.32, and Cs0.25MA0.03FA0.72PbI2.73Br0.27, respectively. Among these, Cs0.25MA0.03FA0.72PbI2.73Br0.27 perovskite stands out due to its high crystallinity, low microstrain, and low trap density, giving rise to the highest efficiency of 20.64% with the lowest voltage loss. This perovskite also exhibits superior air, light, and thermal stability. These findings underscore the importance of rational cation design in achieving efficient and photostable WBG PSCs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阳离子工程实现高效稳定的宽带隙 Perovskite 太阳能电池
大电压缺口和光诱导卤化物偏析是阻碍宽带隙(WBG)(Eg ≥ 1.65 eV)包晶体太阳能电池(PSCs)发展的两大挑战。本文介绍了一种阳离子工程方法,通过加入甲胺(MA)作为第三阳离子来增强甲脒-铯(FA-Cs)WBG 包晶体的光电特性。通过优化 MA 的含量,系统地研究了带隙为 1.68 eV 的三种包晶,分别简称为 Cs0.05、Cs0.15 和 Cs0.25。研究发现,MA 的加入能有效提高这三种包晶石的结晶度并改善载流子寿命。此外,由于 MA 在尺寸不匹配的 FA 和 Cs 之间的缓冲作用,FA-MA-Cs 包晶体薄膜中的微应变显著减小,这是级联阳离子设计带来的好处。三个物种的优化组合分别为 Cs0.05MA0.2FA0.75PbI2.58Br0.42、Cs0.15MA0.1FA0.75PbI2.68Br0.32 和 Cs0.25MA0.03FA0.72PbI2.73Br0.27。其中,Cs0.25MA0.03FA0.72PbI2.73Br0.27 包晶因其结晶度高、微应变小和陷阱密度低而脱颖而出,以最低的电压损耗实现了 20.64% 的最高效率。这种包晶还表现出卓越的空气稳定性、光稳定性和热稳定性。这些发现强调了合理的阳离子设计对于实现高效和光稳定性 WBG PSCs 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1