Oliver Kunz, Juergen W. Weber, Germain Rey, Mattias Juhl, Thorsten Trupke
{"title":"Daylight Photoluminescence Imaging via Optical String Switching","authors":"Oliver Kunz, Juergen W. Weber, Germain Rey, Mattias Juhl, Thorsten Trupke","doi":"10.1002/solr.202400385","DOIUrl":null,"url":null,"abstract":"<p>Optical switching of the electrical operating point of individual crystalline silicon modules has previously been demonstrated as an elegant noncontact method for outdoor photoluminescence image acquisition in full daylight, with the important advantage that no modifications to the system wiring are required. Herein, a modified approach for photoluminescence imaging acquisition in large photovoltaic arrays, enabled by simultaneous optical switching of all modules within a series-connected string, is demonstrated. This improved method is a simpler approach and allows for significantly increased measurement throughput. Quantitative assessment of image data acquired in full daylight is possible since all modules in a string are series connected and operate at the same current. Excellent agreement is reported for voltage variations between modules that are inferred from daylight photoluminescence image data and measurements conducted under controlled laboratory conditions.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400385","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical switching of the electrical operating point of individual crystalline silicon modules has previously been demonstrated as an elegant noncontact method for outdoor photoluminescence image acquisition in full daylight, with the important advantage that no modifications to the system wiring are required. Herein, a modified approach for photoluminescence imaging acquisition in large photovoltaic arrays, enabled by simultaneous optical switching of all modules within a series-connected string, is demonstrated. This improved method is a simpler approach and allows for significantly increased measurement throughput. Quantitative assessment of image data acquired in full daylight is possible since all modules in a string are series connected and operate at the same current. Excellent agreement is reported for voltage variations between modules that are inferred from daylight photoluminescence image data and measurements conducted under controlled laboratory conditions.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.