Anh Huy Tuan Le, Shuai Nie, Eduardo Prieto Ochoa, John Rodriguez, Ruy Sebastian Bonilla, Ziv Hameiri
{"title":"Determination of Temperature- and Carrier-Dependent Surface Recombination in Silicon","authors":"Anh Huy Tuan Le, Shuai Nie, Eduardo Prieto Ochoa, John Rodriguez, Ruy Sebastian Bonilla, Ziv Hameiri","doi":"10.1002/solr.202400191","DOIUrl":null,"url":null,"abstract":"<p>Knowledge regarding the temperature dependence of the surface recombination at the interface between silicon and various dielectrics is critically important as it 1) provides fundamental information regarding the interfaces and 2) improves the modeling of solar cell performance under actual operating conditions. Herein, the temperature- and carrier-dependent surface recombination at the silicon–oxide/silicon and aluminum–oxide/silicon interfaces in the temperature range of 25−90 °C using an advanced technique is investigated. This method enables to control the surface carrier population from heavy accumulation to heavy inversion via an external bias voltage, allowing for the decoupling of the bulk and surface contributions to the effective lifetime. Thus, it offers a simple and versatile manner to separate the chemical passivation from the charge-assisted population control at the silicon/dielectric interface. A model is established to obtain the temperature dependence of the capture cross sections, a critical capability for the optimization of the dielectric layers and the investigation of the fundamental properties of the passivation under field operating conditions.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 17","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400191","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge regarding the temperature dependence of the surface recombination at the interface between silicon and various dielectrics is critically important as it 1) provides fundamental information regarding the interfaces and 2) improves the modeling of solar cell performance under actual operating conditions. Herein, the temperature- and carrier-dependent surface recombination at the silicon–oxide/silicon and aluminum–oxide/silicon interfaces in the temperature range of 25−90 °C using an advanced technique is investigated. This method enables to control the surface carrier population from heavy accumulation to heavy inversion via an external bias voltage, allowing for the decoupling of the bulk and surface contributions to the effective lifetime. Thus, it offers a simple and versatile manner to separate the chemical passivation from the charge-assisted population control at the silicon/dielectric interface. A model is established to obtain the temperature dependence of the capture cross sections, a critical capability for the optimization of the dielectric layers and the investigation of the fundamental properties of the passivation under field operating conditions.
了解硅与各种电介质界面上表面重组的温度依赖性至关重要,因为它:1)提供了有关界面的基本信息;2)改进了实际工作条件下太阳能电池性能的建模。本文采用一种先进的技术,研究了 25-90 °C 温度范围内硅-氧化物/硅和铝-氧化物/硅界面上与温度和载流子有关的表面重组。这种方法能够通过外部偏置电压控制表面载流子群从重度积聚到重度反转,从而使有效寿命的块体和表面贡献解耦。因此,它提供了一种简单而通用的方法,将化学钝化与硅/介质界面上的电荷辅助载流子群控制分离开来。我们建立了一个模型来获得俘获截面的温度依赖性,这是优化介电层和研究现场工作条件下钝化基本特性的关键能力。
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.