Perovskite Nanocomposite: A Step Toward Photocatalytic Degradation of Organic Dyes

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-08-29 DOI:10.1002/solr.202400449
Miriam Minguez-Avellan, Noemi Farinós-Navajas, Jaume Noguera-Gómez, Víctor Sagra Rodríguez, Marta Vallés-Pelarda, Cristina Momblona, Teresa S. Ripolles, Pablo P. Boix, Rafael Abargues
{"title":"Perovskite Nanocomposite: A Step Toward Photocatalytic Degradation of Organic Dyes","authors":"Miriam Minguez-Avellan,&nbsp;Noemi Farinós-Navajas,&nbsp;Jaume Noguera-Gómez,&nbsp;Víctor Sagra Rodríguez,&nbsp;Marta Vallés-Pelarda,&nbsp;Cristina Momblona,&nbsp;Teresa S. Ripolles,&nbsp;Pablo P. Boix,&nbsp;Rafael Abargues","doi":"10.1002/solr.202400449","DOIUrl":null,"url":null,"abstract":"<p>Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI<sub>3</sub> nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI<sub>3</sub>-Ni(AcO)<sub>2</sub> nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI<sub>3</sub> films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI3 nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI3-Ni(AcO)2 nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI3 films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透镜纳米复合材料:迈向光催化降解有机染料的一步
金属卤化物过氧化物为将太阳能转化为化学能,从而应对紧迫的环境挑战提供了一个大有可为的机会。虽然金属卤化物的优异光电特性已成功应用于光伏领域,但其在光催化领域的潜力仍相对有待开发。在此,我们报告了一种在醋酸镍基质中原位合成 MAPbI3 纳米晶体(NCs)的新型湿度驱动方法,该方法形成的纳米复合薄膜可增强系统的稳定性,使其能够用于光化学反应。紫外可见光谱和 X 射线衍射证实,在相对湿度(RH)为 80% 的条件下,1 分钟后就能在基质中快速有效地合成 NC。由于电子显微镜显示孔隙率和纳米晶体尺寸随着时间的推移而增大,因此在 80% 相对湿度下暴露 60 分钟后就能达到最佳光电转换条件。与标准多晶 MAPbI3 薄膜相比,MAPbI3-Ni(AcO)2 纳米复合材料在模拟阳光下分解苏丹 III 时表现出更高的光催化活性。此外,这种纳米复合材料在多次循环中表现出良好的可回收性。总之,这项工作凸显了基于 MHP 的纳米复合材料在太阳能驱动的污染缓解催化系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1