Miriam Minguez-Avellan, Noemi Farinós-Navajas, Jaume Noguera-Gómez, Víctor Sagra Rodríguez, Marta Vallés-Pelarda, Cristina Momblona, Teresa S. Ripolles, Pablo P. Boix, Rafael Abargues
{"title":"Perovskite Nanocomposite: A Step Toward Photocatalytic Degradation of Organic Dyes","authors":"Miriam Minguez-Avellan, Noemi Farinós-Navajas, Jaume Noguera-Gómez, Víctor Sagra Rodríguez, Marta Vallés-Pelarda, Cristina Momblona, Teresa S. Ripolles, Pablo P. Boix, Rafael Abargues","doi":"10.1002/solr.202400449","DOIUrl":null,"url":null,"abstract":"<p>Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI<sub>3</sub> nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI<sub>3</sub>-Ni(AcO)<sub>2</sub> nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI<sub>3</sub> films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 19","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites offer a promising opportunity for transforming solar energy into chemical energy, thereby addressing pressing environmental challenges. While their excellent optoelectronic properties have been successfully applied in photovoltaics, their potential in photocatalysis remains relatively unexplored. Herein, we report a novel humidity-driven approach for the in situ synthesis of MAPbI3 nanocrystals (NCs) within a nickel acetate matrix, forming a nanocomposite thin film that enhances the system's stability and enables its use in photochemical reactions. UV-Vis spectroscopy and X-ray diffraction confirm the rapid and effective synthesis of NCs within the matrix after 1 min at 80% relative humidity (RH). Optimal photoconversion conditions are attained after 60 min of exposure at 80% RH, due to the increased porosity and nanocrystal size over time as revealed by electron microscopy. The MAPbI3-Ni(AcO)2 nanocomposite exhibits superior photocatalytic activity compared to standard polycrystalline MAPbI3 films for the decomposition of Sudan III under simulated sunlight. Furthermore, the nanocomposite demonstrates good recyclability over multiple cycles. Overall, this work highlights the potential of MHP-based nanocomposites for solar-driven catalytic systems in pollution mitigation.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.