Austin M. Kay, Drew B. Riley, Oskar J. Sandberg, Gregory Burwell, Paul Meredith, Ardalan Armin
{"title":"On the Performance Limits of Agrivoltaics—From Thermodynamic to Geo-Meteorological Considerations","authors":"Austin M. Kay, Drew B. Riley, Oskar J. Sandberg, Gregory Burwell, Paul Meredith, Ardalan Armin","doi":"10.1002/solr.202400456","DOIUrl":null,"url":null,"abstract":"<p>As the world strives toward its net-zero targets, innovative solutions are required to reduce carbon emissions across all industrial sectors. One approach that can reduce emissions from food production is agrivoltaics—photovoltaic devices that enable the dual-use of land for both agricultural and electrical power-generating purposes. Optimizing agrivoltaics presents a complex systems-level challenge requiring a balance between maximizing crop yields and on-site power generation. This balance necessitates careful consideration of optics (light absorption, reflection, and transmission), thermodynamics, and the efficiency at which light is converted into electricity. Herein, real-world solar insolation and temperature data are used in combination with a comprehensive device-level model to determine the annual power generation of agrivoltaics based on different photovoltaic material choices. It is found that organic semiconductor-based photovoltaics integrated as semitransparent elements of protected cropping environments (advanced greenhouses) have comparable performance to state-of-the-art, inorganic semiconductor-based photovoltaics like silicon. The results provide a solid technical basis for building full, systems-level, technoeconomic models that account for crop and location requirements, starting from the undeniable standpoint of thermodynamics and electro-optical physics.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400456","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400456","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
As the world strives toward its net-zero targets, innovative solutions are required to reduce carbon emissions across all industrial sectors. One approach that can reduce emissions from food production is agrivoltaics—photovoltaic devices that enable the dual-use of land for both agricultural and electrical power-generating purposes. Optimizing agrivoltaics presents a complex systems-level challenge requiring a balance between maximizing crop yields and on-site power generation. This balance necessitates careful consideration of optics (light absorption, reflection, and transmission), thermodynamics, and the efficiency at which light is converted into electricity. Herein, real-world solar insolation and temperature data are used in combination with a comprehensive device-level model to determine the annual power generation of agrivoltaics based on different photovoltaic material choices. It is found that organic semiconductor-based photovoltaics integrated as semitransparent elements of protected cropping environments (advanced greenhouses) have comparable performance to state-of-the-art, inorganic semiconductor-based photovoltaics like silicon. The results provide a solid technical basis for building full, systems-level, technoeconomic models that account for crop and location requirements, starting from the undeniable standpoint of thermodynamics and electro-optical physics.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.