Assessing the Performance, Reliability, Economic, and Environmental Impact of Photovoltaic Systems Installation Parameters in Harsh Climates: Case Study Iraq
Mohammed Adnan Hameed, Ismail Kaaya, Nikoleta Kyranaki, Richard de Jong, Michaël Daenen, Arnaud Morlier, Qais Matti Alias, Roland Scheer, Ralph Gottschalg
{"title":"Assessing the Performance, Reliability, Economic, and Environmental Impact of Photovoltaic Systems Installation Parameters in Harsh Climates: Case Study Iraq","authors":"Mohammed Adnan Hameed, Ismail Kaaya, Nikoleta Kyranaki, Richard de Jong, Michaël Daenen, Arnaud Morlier, Qais Matti Alias, Roland Scheer, Ralph Gottschalg","doi":"10.1002/solr.202400455","DOIUrl":null,"url":null,"abstract":"<p>This study examines how photovoltaic (PV) installation parameters—such as tilt angle, azimuth angle, row pitch, height above ground, and albedo impact PV module operating conditions in harsh climates, focusing on irradiance levels and module temperature. It evaluates how these parameters influence degradation rates and the overall lifetime of PV modules. The study correlates variations in module lifetime to lifetime energy generation, economic factors, and environmental impacts. A novel PV optimization strategy is proposed, incorporating lifetime energy yield, levelized cost of electricity, and greenhouse gas emissions, rather than focusing solely on economic metrics. Findings show that installation parameters significantly affect climate stressors and PV module lifetime, making their consideration crucial. For instance, higher tilt angles are recommended to reduce stressor levels and extend the module's lifetime, optimizing energy yield while mitigating losses due to soiling. Height and albedo are identified as particularly sensitive, especially for bifacial modules, where small changes lead to significant differences in lifetime and energy yield. The study highlights an optimal albedo of ≈0.5, aligned with desert sand, suggesting that albedo boosters may not be necessary in desert climates. This approach offers valuable insights for balancing long-term performance, environmental impact, and economic factors in PV system design.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400455","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines how photovoltaic (PV) installation parameters—such as tilt angle, azimuth angle, row pitch, height above ground, and albedo impact PV module operating conditions in harsh climates, focusing on irradiance levels and module temperature. It evaluates how these parameters influence degradation rates and the overall lifetime of PV modules. The study correlates variations in module lifetime to lifetime energy generation, economic factors, and environmental impacts. A novel PV optimization strategy is proposed, incorporating lifetime energy yield, levelized cost of electricity, and greenhouse gas emissions, rather than focusing solely on economic metrics. Findings show that installation parameters significantly affect climate stressors and PV module lifetime, making their consideration crucial. For instance, higher tilt angles are recommended to reduce stressor levels and extend the module's lifetime, optimizing energy yield while mitigating losses due to soiling. Height and albedo are identified as particularly sensitive, especially for bifacial modules, where small changes lead to significant differences in lifetime and energy yield. The study highlights an optimal albedo of ≈0.5, aligned with desert sand, suggesting that albedo boosters may not be necessary in desert climates. This approach offers valuable insights for balancing long-term performance, environmental impact, and economic factors in PV system design.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.