Haiting Lin, Anyi Chen, Tianren Liu, Wensheng Zhang, Xinyv Du, Junjie Feng, Jiajun Zeng, Yingying Fan, Dongxue Han, Li Niu
{"title":"Synergistically Photocatalytic Conversion of Two Greenhouse Gases to Liquid-Phase Oxygenates under Anaerobic Conditions","authors":"Haiting Lin, Anyi Chen, Tianren Liu, Wensheng Zhang, Xinyv Du, Junjie Feng, Jiajun Zeng, Yingying Fan, Dongxue Han, Li Niu","doi":"10.1002/solr.202400522","DOIUrl":null,"url":null,"abstract":"<p>\nCollaborative conversion of methane and carbon dioxide into sustainable chemicals is an appealing solution to simultaneously overcome both environmental problems and energy crisis. However, this reaction is limited to the preparation of syngas with the unfavorable feature for transportation and storage. Herein, liquid formaldehyde as product is fabricated by the collaborative conversion of methane and carbon dioxide using anatase phase titanium dioxide as photocatalyst. The productivity reaches 14.65 mmol g<sup>−1</sup> with 88.32% selectivity. In situ diffuse reflectance Fourier transform infrared spectroscopy, isotope testes, and theoretical calculation clarify that the photoexcited holes and electrons engage into methane oxidation and carbon dioxide reduction over anatase using surface hydroxyl species and oxygen vacancy as active sites, respectively. The consumption of surface hydroxyl species on methane oxidation promotes the oxygen vacancy formation for carbon dioxide adsorption, mutually the carbon dioxide provides the oxygen atom for surface hydroxyl species facilitating methane oxidation. The consumption of photoelectrons and photoholes on carbon dioxide reduction and methane oxidation balances the number of photogenerated carriers and ensures the catalytic system stability. In this work, the avenue is broadened toward the co-conversion of greenhouse gas into desirable chemical products in a sustainable way.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400522","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Collaborative conversion of methane and carbon dioxide into sustainable chemicals is an appealing solution to simultaneously overcome both environmental problems and energy crisis. However, this reaction is limited to the preparation of syngas with the unfavorable feature for transportation and storage. Herein, liquid formaldehyde as product is fabricated by the collaborative conversion of methane and carbon dioxide using anatase phase titanium dioxide as photocatalyst. The productivity reaches 14.65 mmol g−1 with 88.32% selectivity. In situ diffuse reflectance Fourier transform infrared spectroscopy, isotope testes, and theoretical calculation clarify that the photoexcited holes and electrons engage into methane oxidation and carbon dioxide reduction over anatase using surface hydroxyl species and oxygen vacancy as active sites, respectively. The consumption of surface hydroxyl species on methane oxidation promotes the oxygen vacancy formation for carbon dioxide adsorption, mutually the carbon dioxide provides the oxygen atom for surface hydroxyl species facilitating methane oxidation. The consumption of photoelectrons and photoholes on carbon dioxide reduction and methane oxidation balances the number of photogenerated carriers and ensures the catalytic system stability. In this work, the avenue is broadened toward the co-conversion of greenhouse gas into desirable chemical products in a sustainable way.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.