Crown-Like Structures in Breast Adipose Tissue: Finding a 'Needle-in-a-Haystack' using Artificial Intelligence and Collaborative Active Learning on the Web

Praphulla MS Bhawsar, Cody Ramin, Petra Lenz, Máire A Duggan, Alexandra R Harris, Brittany Jenkins, Renata Cora, Mustapha Abubakar, Gretchen Gierach, Joel Saltz, Jonas S Almeida
{"title":"Crown-Like Structures in Breast Adipose Tissue: Finding a 'Needle-in-a-Haystack' using Artificial Intelligence and Collaborative Active Learning on the Web","authors":"Praphulla MS Bhawsar, Cody Ramin, Petra Lenz, Máire A Duggan, Alexandra R Harris, Brittany Jenkins, Renata Cora, Mustapha Abubakar, Gretchen Gierach, Joel Saltz, Jonas S Almeida","doi":"arxiv-2409.08275","DOIUrl":null,"url":null,"abstract":"Crown-like structures (CLS) in breast adipose tissue are formed as a result\nof macrophages clustering around necrotic adipocytes in specific patterns. As a\nhistologic marker of local inflammation, CLS could have potential diagnostic\nutility as a biomarker for breast cancer risk. However, given the scale of\nwhole slide images and the rarity of CLS (a few cells in an entire tissue\nsample), microscope-based manual identification is a challenge for the\npathologist. In this report, we describe an artificial intelligence pipeline to\nsolve this needle-in-a-haystack problem. We developed a zero-cost,\nzero-footprint web platform to enable remote operation on digital whole slide\nimaging data directly in the web browser, supporting collaborative annotation\nof the data by multiple experts. The annotated images then allow for\nincremental training and fine tuning of deep neural networks via active\nlearning. The platform is reusable and requires no backend or installations,\nthus ensuring the data remains secure and private under the governance of the\nend user. Using this platform, we iteratively trained a CLS identification\nmodel, evaluating the performance after each round and adding examples to the\ntraining data to overcome failure cases. The resulting model, with an AUC of\n0.90, shows promise as a first-pass screening tool to detect CLS in breast\nadipose tissue, considerably reducing the workload of the pathologist. Platform available at: https://episphere.github.io/path","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crown-like structures (CLS) in breast adipose tissue are formed as a result of macrophages clustering around necrotic adipocytes in specific patterns. As a histologic marker of local inflammation, CLS could have potential diagnostic utility as a biomarker for breast cancer risk. However, given the scale of whole slide images and the rarity of CLS (a few cells in an entire tissue sample), microscope-based manual identification is a challenge for the pathologist. In this report, we describe an artificial intelligence pipeline to solve this needle-in-a-haystack problem. We developed a zero-cost, zero-footprint web platform to enable remote operation on digital whole slide imaging data directly in the web browser, supporting collaborative annotation of the data by multiple experts. The annotated images then allow for incremental training and fine tuning of deep neural networks via active learning. The platform is reusable and requires no backend or installations, thus ensuring the data remains secure and private under the governance of the end user. Using this platform, we iteratively trained a CLS identification model, evaluating the performance after each round and adding examples to the training data to overcome failure cases. The resulting model, with an AUC of 0.90, shows promise as a first-pass screening tool to detect CLS in breast adipose tissue, considerably reducing the workload of the pathologist. Platform available at: https://episphere.github.io/path
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳房脂肪组织中的冠状结构:利用人工智能和网络协作主动学习寻找 "大海捞针
乳腺脂肪组织中的冠状结构(CLS)是巨噬细胞以特定模式聚集在坏死脂肪细胞周围而形成的。作为局部炎症的组织学标记,冠状结构可能具有诊断乳腺癌风险的生物标记的潜在作用。然而,鉴于整张载玻片图像的比例和 CLS 的罕见性(整个组织样本中只有几个细胞),基于显微镜的人工识别对病理学家来说是一项挑战。在本报告中,我们介绍了一种人工智能管道来解决这个大海捞针式的问题。我们开发了一个零成本、零足迹的网络平台,可直接在网络浏览器中对数字全切片成像数据进行远程操作,支持多位专家对数据进行协作注释。注释后的图像可通过主动学习对深度神经网络进行增量训练和微调。该平台可重复使用,无需后台或安装,从而确保数据在终端用户的管理下保持安全和私密。利用该平台,我们反复训练 CLS 识别模型,在每轮训练后评估其性能,并向训练数据中添加示例以克服失败案例。结果表明,该模型的 AUC 为 0.90,有望成为检测乳腺脂肪组织中 CLS 的第一道筛查工具,从而大大减轻病理学家的工作量。平台见: https://episphere.github.io/path
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1