Hierarchical novel class discovery for single-cell transcriptomic profiles

Malek Senoussi, Thierry Artières, Paul Villoutreix
{"title":"Hierarchical novel class discovery for single-cell transcriptomic profiles","authors":"Malek Senoussi, Thierry Artières, Paul Villoutreix","doi":"arxiv-2409.05937","DOIUrl":null,"url":null,"abstract":"One of the major challenges arising from single-cell transcriptomics\nexperiments is the question of how to annotate the associated single-cell\ntranscriptomic profiles. Because of the large size and the high dimensionality\nof the data, automated methods for annotation are needed. We focus here on\ndatasets obtained in the context of developmental biology, where the\ndifferentiation process leads to a hierarchical structure. We consider a\nfrequent setting where both labeled and unlabeled data are available at\ntraining time, but the sets of the labels of labeled data on one side and of\nthe unlabeled data on the other side, are disjoint. It is an instance of the\nNovel Class Discovery problem. The goal is to achieve two objectives,\nclustering the data and mapping the clusters with labels. We propose extensions\nof k-Means and GMM clustering methods for solving the problem and report\ncomparative results on artificial and experimental transcriptomic datasets. Our\napproaches take advantage of the hierarchical nature of the data.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major challenges arising from single-cell transcriptomics experiments is the question of how to annotate the associated single-cell transcriptomic profiles. Because of the large size and the high dimensionality of the data, automated methods for annotation are needed. We focus here on datasets obtained in the context of developmental biology, where the differentiation process leads to a hierarchical structure. We consider a frequent setting where both labeled and unlabeled data are available at training time, but the sets of the labels of labeled data on one side and of the unlabeled data on the other side, are disjoint. It is an instance of the Novel Class Discovery problem. The goal is to achieve two objectives, clustering the data and mapping the clusters with labels. We propose extensions of k-Means and GMM clustering methods for solving the problem and report comparative results on artificial and experimental transcriptomic datasets. Our approaches take advantage of the hierarchical nature of the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞转录组图谱的分级新类别发现
单细胞转录组实验面临的主要挑战之一是如何注释相关的单细胞转录组图谱。由于数据量大、维度高,因此需要自动化的注释方法。在此,我们将重点放在发育生物学背景下获得的数据集上,其中的分化过程会导致分层结构。我们考虑的情况是,在训练时,有标签和无标签数据都可用,但一边是有标签数据的标签集,另一边是无标签数据的标签集,两者互不相交。这是新类发现问题的一个实例。我们的目标是实现两个目标:对数据进行聚类和将聚类与标签进行映射。我们提出了 k-Means 和 GMM 聚类方法的扩展来解决这个问题,并报告了在人工和实验转录组数据集上的比较结果。我们的方法利用了数据的层次性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1