The Role of Graph Topology in the Performance of Biomedical Knowledge Graph Completion Models

Alberto Cattaneo, Stephen Bonner, Thomas Martynec, Carlo Luschi, Ian P Barrett, Daniel Justus
{"title":"The Role of Graph Topology in the Performance of Biomedical Knowledge Graph Completion Models","authors":"Alberto Cattaneo, Stephen Bonner, Thomas Martynec, Carlo Luschi, Ian P Barrett, Daniel Justus","doi":"arxiv-2409.04103","DOIUrl":null,"url":null,"abstract":"Knowledge Graph Completion has been increasingly adopted as a useful method\nfor several tasks in biomedical research, like drug repurposing or drug-target\nidentification. To that end, a variety of datasets and Knowledge Graph\nEmbedding models has been proposed over the years. However, little is known\nabout the properties that render a dataset useful for a given task and, even\nthough theoretical properties of Knowledge Graph Embedding models are well\nunderstood, their practical utility in this field remains controversial. We\nconduct a comprehensive investigation into the topological properties of\npublicly available biomedical Knowledge Graphs and establish links to the\naccuracy observed in real-world applications. By releasing all model\npredictions and a new suite of analysis tools we invite the community to build\nupon our work and continue improving the understanding of these crucial\napplications.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge Graph Completion has been increasingly adopted as a useful method for several tasks in biomedical research, like drug repurposing or drug-target identification. To that end, a variety of datasets and Knowledge Graph Embedding models has been proposed over the years. However, little is known about the properties that render a dataset useful for a given task and, even though theoretical properties of Knowledge Graph Embedding models are well understood, their practical utility in this field remains controversial. We conduct a comprehensive investigation into the topological properties of publicly available biomedical Knowledge Graphs and establish links to the accuracy observed in real-world applications. By releasing all model predictions and a new suite of analysis tools we invite the community to build upon our work and continue improving the understanding of these crucial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图拓扑在生物医学知识图完成模型性能中的作用
知识图谱补全(Knowledge Graph Completion)作为生物医学研究中若干任务(如药物再利用或药物目标识别)的有用方法,已被越来越多地采用。为此,多年来人们提出了各种各样的数据集和知识图谱嵌入模型。然而,人们对使数据集对特定任务有用的属性知之甚少,尽管知识图谱嵌入模型的理论属性已广为人知,但它们在这一领域的实际效用仍存在争议。我们对公开的生物医学知识图谱的拓扑特性进行了全面调查,并将其与实际应用中观察到的准确性联系起来。通过发布所有模型预测和一套新的分析工具,我们邀请社会各界在我们工作的基础上,继续提高对这些关键应用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1