Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials

Yizhen Zheng, Huan Yee Koh, Maddie Yang, Li Li, Lauren T. May, Geoffrey I. Webb, Shirui Pan, George Church
{"title":"Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials","authors":"Yizhen Zheng, Huan Yee Koh, Maddie Yang, Li Li, Lauren T. May, Geoffrey I. Webb, Shirui Pan, George Church","doi":"arxiv-2409.04481","DOIUrl":null,"url":null,"abstract":"The integration of Large Language Models (LLMs) into the drug discovery and\ndevelopment field marks a significant paradigm shift, offering novel\nmethodologies for understanding disease mechanisms, facilitating drug\ndiscovery, and optimizing clinical trial processes. This review highlights the\nexpanding role of LLMs in revolutionizing various stages of the drug\ndevelopment pipeline. We investigate how these advanced computational models\ncan uncover target-disease linkage, interpret complex biomedical data, enhance\ndrug molecule design, predict drug efficacy and safety profiles, and facilitate\nclinical trial processes. Our paper aims to provide a comprehensive overview\nfor researchers and practitioners in computational biology, pharmacology, and\nAI4Science by offering insights into the potential transformative impact of\nLLMs on drug discovery and development.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift, offering novel methodologies for understanding disease mechanisms, facilitating drug discovery, and optimizing clinical trial processes. This review highlights the expanding role of LLMs in revolutionizing various stages of the drug development pipeline. We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes. Our paper aims to provide a comprehensive overview for researchers and practitioners in computational biology, pharmacology, and AI4Science by offering insights into the potential transformative impact of LLMs on drug discovery and development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药物发现和开发中的大型语言模型:从疾病机理到临床试验
大语言模型(LLMs)融入药物发现和开发领域标志着一个重大的范式转变,为理解疾病机理、促进药物发现和优化临床试验过程提供了新颖的方法。本综述强调了 LLM 在彻底改变药物开发流水线各个阶段中不断扩大的作用。我们研究了这些先进的计算模型如何揭示靶点与疾病的联系、解释复杂的生物医学数据、增强药物分子设计、预测药物疗效和安全性概况以及促进临床试验过程。我们的论文旨在为计算生物学、药理学和人工智能科学(AI4Science)领域的研究人员和从业人员提供一个全面的概述,深入探讨LLMs 对药物发现和开发的潜在变革性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1