BioBricks.ai: A Versioned Data Registry for Life Sciences Data Assets

Yifan Gao, Zakariyya Mughal, Jose A. Jaramillo-Villegas, Marie Corradi, Alexandre Borrel, Ben Lieberman, Suliman Sharif, John Shaffer, Karamarie Fecho, Ajay Chatrath, Alexandra Maertens, Marc A. T. Teunis, Nicole Kleinstreuer, Thomas Hartung, Thomas Luechtefeld
{"title":"BioBricks.ai: A Versioned Data Registry for Life Sciences Data Assets","authors":"Yifan Gao, Zakariyya Mughal, Jose A. Jaramillo-Villegas, Marie Corradi, Alexandre Borrel, Ben Lieberman, Suliman Sharif, John Shaffer, Karamarie Fecho, Ajay Chatrath, Alexandra Maertens, Marc A. T. Teunis, Nicole Kleinstreuer, Thomas Hartung, Thomas Luechtefeld","doi":"arxiv-2408.17320","DOIUrl":null,"url":null,"abstract":"Researchers in biomedical research, public health, and the life sciences\noften spend weeks or months discovering, accessing, curating, and integrating\ndata from disparate sources, significantly delaying the onset of actual\nanalysis and innovation. Instead of countless developers creating redundant and\ninconsistent data pipelines, BioBricks.ai offers a centralized data repository\nand a suite of developer-friendly tools to simplify access to scientific data.\nCurrently, BioBricks.ai delivers over ninety biological and chemical datasets.\nIt provides a package manager-like system for installing and managing\ndependencies on data sources. Each 'brick' is a Data Version Control git\nrepository that supports an updateable pipeline for extraction, transformation,\nand loading data into the BioBricks.ai backend at https://biobricks.ai. Use\ncases include accelerating data science workflows and facilitating the creation\nof novel data assets by integrating multiple datasets into unified, harmonized\nresources. In conclusion, BioBricks.ai offers an opportunity to accelerate\naccess and use of public data through a single open platform.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers in biomedical research, public health, and the life sciences often spend weeks or months discovering, accessing, curating, and integrating data from disparate sources, significantly delaying the onset of actual analysis and innovation. Instead of countless developers creating redundant and inconsistent data pipelines, BioBricks.ai offers a centralized data repository and a suite of developer-friendly tools to simplify access to scientific data. Currently, BioBricks.ai delivers over ninety biological and chemical datasets. It provides a package manager-like system for installing and managing dependencies on data sources. Each 'brick' is a Data Version Control git repository that supports an updateable pipeline for extraction, transformation, and loading data into the BioBricks.ai backend at https://biobricks.ai. Use cases include accelerating data science workflows and facilitating the creation of novel data assets by integrating multiple datasets into unified, harmonized resources. In conclusion, BioBricks.ai offers an opportunity to accelerate access and use of public data through a single open platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioBricks.ai:生命科学数据资产的版本化数据注册中心
生物医学研究、公共卫生和生命科学领域的研究人员往往需要花费数周或数月的时间来发现、访问、整理和整合来自不同来源的数据,这大大延误了实际分析和创新的开始。目前,BioBricks.ai 提供了九十多个生物和化学数据集。它提供了一个类似于软件包管理器的系统,用于安装和管理数据源的依赖性。每个 "砖块 "都是一个数据版本控制 git 仓库,它支持一个可更新的管道,用于提取、转换数据并将其加载到 BioBricks.ai 后端(https://biobricks.ai)。使用案例包括加速数据科学工作流程,以及通过将多个数据集整合为统一、协调的资源来促进新型数据资产的创建。总之,BioBricks.ai 提供了一个通过单一开放平台加速获取和使用公共数据的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1