Margaret M Busse, Michael A McKibben, William Stringfellow, Patrick Dobson, Jennifer R Stokes-Draut
{"title":"Impact of geothermal expansion and lithium extraction in the Salton Sea known geothermal resource area (SS-KGRA) on local water resources","authors":"Margaret M Busse, Michael A McKibben, William Stringfellow, Patrick Dobson, Jennifer R Stokes-Draut","doi":"10.1088/1748-9326/ad6a73","DOIUrl":null,"url":null,"abstract":"Saline brines currently being brought to the surface to produce geothermal energy in the Salton Sea region of California contain high concentrations of lithium that could potentially be extracted before the brine is reinjected back into the geothermal reservoir. This would create a new supply chain of domestically sourced lithium for the United States to produce lithium-based batteries that will help drive the transition to a renewable-based energy grid. Plans to expand geothermal production along with lithium extraction are being considered in the Salton Sea known geothermal resource area. We discuss water availability and quality issues and potential concerns about water pollution associated with this geothermal expansion and lithium production in the context of potential future restrictions on water extractions from the Colorado River Basin. We estimate that water demand for currently proposed geothermal production and lithium extraction facilities only accounts for ∼4% of the historical water supply in the region. Regional water allocation will be more impacted by the proposed cuts to the region’s water allocation from the Colorado River between now and 2050 than by expansion of geothermal production with associated lithium extraction. Accurately planning for water needs in the future will require more specific information about water demands of the lithium extraction and refining processes.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"3 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad6a73","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Saline brines currently being brought to the surface to produce geothermal energy in the Salton Sea region of California contain high concentrations of lithium that could potentially be extracted before the brine is reinjected back into the geothermal reservoir. This would create a new supply chain of domestically sourced lithium for the United States to produce lithium-based batteries that will help drive the transition to a renewable-based energy grid. Plans to expand geothermal production along with lithium extraction are being considered in the Salton Sea known geothermal resource area. We discuss water availability and quality issues and potential concerns about water pollution associated with this geothermal expansion and lithium production in the context of potential future restrictions on water extractions from the Colorado River Basin. We estimate that water demand for currently proposed geothermal production and lithium extraction facilities only accounts for ∼4% of the historical water supply in the region. Regional water allocation will be more impacted by the proposed cuts to the region’s water allocation from the Colorado River between now and 2050 than by expansion of geothermal production with associated lithium extraction. Accurately planning for water needs in the future will require more specific information about water demands of the lithium extraction and refining processes.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.