Romain Presty, Olivier Massol, Emma Jagu, Pascal da Costa
{"title":"Mapping the landscape of carbon dioxide removal research: a bibliometric analysis","authors":"Romain Presty, Olivier Massol, Emma Jagu, Pascal da Costa","doi":"10.1088/1748-9326/ad71e0","DOIUrl":null,"url":null,"abstract":"An intense global research effort on carbon dioxide removal (CDR) technologies is generating a rapidly expanding scientific literature. These contributions stem from various disciplines and investigate various CDR concepts and their potential implications. This study conducts an updated analysis of the international research effort on CDR from 2012 to 2023, examining 7893 publications using bibliometric techniques. We focus on the geographic distribution of technology-specific research and the funding driving this research. Significant publication growth is observed post-2015, particularly after 2018 and in 2023, driven primarily by the EU, China, and the US. Notably, biochar, afforestation/reforestation, and soil carbon sequestration are among the most researched CDR options, with direct air carbon capture and storage, bioenergy carbon capture and storage, and blue carbon also receiving substantial attention, especially in 2023. Analysis of scientific funding patterns aligns with these trends. Based on these findings, the study proposes a knowledge roadmap to elucidate emerging trends in CDR literature, offering insights for future research and policy development.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"41 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad71e0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An intense global research effort on carbon dioxide removal (CDR) technologies is generating a rapidly expanding scientific literature. These contributions stem from various disciplines and investigate various CDR concepts and their potential implications. This study conducts an updated analysis of the international research effort on CDR from 2012 to 2023, examining 7893 publications using bibliometric techniques. We focus on the geographic distribution of technology-specific research and the funding driving this research. Significant publication growth is observed post-2015, particularly after 2018 and in 2023, driven primarily by the EU, China, and the US. Notably, biochar, afforestation/reforestation, and soil carbon sequestration are among the most researched CDR options, with direct air carbon capture and storage, bioenergy carbon capture and storage, and blue carbon also receiving substantial attention, especially in 2023. Analysis of scientific funding patterns aligns with these trends. Based on these findings, the study proposes a knowledge roadmap to elucidate emerging trends in CDR literature, offering insights for future research and policy development.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.