{"title":"Recalibrated projections of the Hadley circulation under global warming","authors":"Mingna Wu, Chao Li, Zhongshi Zhang","doi":"10.1088/1748-9326/ad751f","DOIUrl":null,"url":null,"abstract":"Climate models project a weakening and expansion of the Hadley circulation (HC) under global warming but with considerable spread in the magnitude of these changes. Here, utilizing models from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6), we illustrate how the variance in projected changes in the HC arises from equilibrium climate sensitivity (ECS) uncertainty across models. Models with higher ECS project a greater extent of static stability increase hence larger HC changes. Using the best estimate of ECS with value of 3 K (∼2.5–4.0 K) to constrain the HC projection, we reveal that the constrained projection yields a 15% (11%) decrease in the weakening (poleward shift) of the HC in the Northern (Southern) Hemisphere compared to the multimodel mean under the SSP5-8.5 scenario. The corresponding projection uncertainty is reduced by about 77.4% and 75.6%, respectively. Our results indicate a smaller-than-expected change in the HC in response to increased CO<sub>2</sub> concentrations.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"95 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad751f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate models project a weakening and expansion of the Hadley circulation (HC) under global warming but with considerable spread in the magnitude of these changes. Here, utilizing models from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6), we illustrate how the variance in projected changes in the HC arises from equilibrium climate sensitivity (ECS) uncertainty across models. Models with higher ECS project a greater extent of static stability increase hence larger HC changes. Using the best estimate of ECS with value of 3 K (∼2.5–4.0 K) to constrain the HC projection, we reveal that the constrained projection yields a 15% (11%) decrease in the weakening (poleward shift) of the HC in the Northern (Southern) Hemisphere compared to the multimodel mean under the SSP5-8.5 scenario. The corresponding projection uncertainty is reduced by about 77.4% and 75.6%, respectively. Our results indicate a smaller-than-expected change in the HC in response to increased CO2 concentrations.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.