Unveiling the role of past vapor pressure deficit through soil moisture in driving tropical vegetation productivity

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Letters Pub Date : 2024-09-06 DOI:10.1088/1748-9326/ad7520
Akash Verma, Subimal Ghosh
{"title":"Unveiling the role of past vapor pressure deficit through soil moisture in driving tropical vegetation productivity","authors":"Akash Verma, Subimal Ghosh","doi":"10.1088/1748-9326/ad7520","DOIUrl":null,"url":null,"abstract":"The impact of soil moisture (SM) and vapor pressure deficit (VPD) on gross primary productivity (GPP) variability in ecosystems is a topic of significant interest. Previous studies have predominantly focused on real-time associations between SM, VPD, and carbon uptake, attributing SM as the principal driver of GPP variability due to its direct and indirect effects through VPD. Using an information theory-based process network approach, we discovered that the influence of past VPD, mediated through its effects on SM, emerges as the primary driver of GPP variability across tropical regions. The past VPD conditions influence GPP directly and also affect SM in real-time alongside GPP, which subsequently impacts GPP variability. Examining land-atmosphere feedback using information theory reveals that past VPD conditions influence SM, but not the reverse. These causal structures explain the consistent decline in GPP with increasing VPD trends observed in tropical regions, which are not consistent with SM trends. Our findings emphasize the importance of considering the influence of past VPD mediated by SM when analyzing complex land-vegetation-atmosphere interactions.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"2 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad7520","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of soil moisture (SM) and vapor pressure deficit (VPD) on gross primary productivity (GPP) variability in ecosystems is a topic of significant interest. Previous studies have predominantly focused on real-time associations between SM, VPD, and carbon uptake, attributing SM as the principal driver of GPP variability due to its direct and indirect effects through VPD. Using an information theory-based process network approach, we discovered that the influence of past VPD, mediated through its effects on SM, emerges as the primary driver of GPP variability across tropical regions. The past VPD conditions influence GPP directly and also affect SM in real-time alongside GPP, which subsequently impacts GPP variability. Examining land-atmosphere feedback using information theory reveals that past VPD conditions influence SM, but not the reverse. These causal structures explain the consistent decline in GPP with increasing VPD trends observed in tropical regions, which are not consistent with SM trends. Our findings emphasize the importance of considering the influence of past VPD mediated by SM when analyzing complex land-vegetation-atmosphere interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过土壤水分揭示过去水汽压力不足在推动热带植被生产力方面的作用
土壤湿度(SM)和水汽压差(VPD)对生态系统总初级生产力(GPP)变化的影响是一个备受关注的话题。以往的研究主要关注土壤水分、水汽压差和碳吸收之间的实时联系,认为土壤水分是 GPP 变化的主要驱动力,因为它通过水汽压差产生直接和间接的影响。利用基于信息论的过程网络方法,我们发现过去的VPD通过其对SM的影响而成为热带地区GPP变化的主要驱动力。过去的 VPD 条件直接影响 GPP,并与 GPP 同时实时影响 SM,进而影响 GPP 变率。利用信息理论研究陆地-大气反馈,可以发现过去的 VPD 条件会影响 SM,而不是相反。这些因果结构解释了在热带地区观察到的 GPP 随 VPD 上升而持续下降的趋势,而这与 SM 的趋势并不一致。我们的研究结果强调,在分析复杂的土地-植被-大气相互作用时,考虑过去由SM介导的VPD的影响非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
期刊最新文献
Interactive effects between extreme temperatures and PM2.5 on cause-specific mortality in thirteen U.S. states. Health benefits of decarbonization and clean air policies in Beijing and China. Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications. Shifting power: data democracy in engineering solutions. Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1