Global convection-permitting model improves subseasonal forecast of plum rain around Japan

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Letters Pub Date : 2024-08-30 DOI:10.1088/1748-9326/ad71e2
Jun Gu, Chun Zhao, Mingyue Xu, Jiawang Feng, Gudongze Li, Yongxuan Zhao, Xiaoyu Hao, Junshi Chen, Hong An
{"title":"Global convection-permitting model improves subseasonal forecast of plum rain around Japan","authors":"Jun Gu, Chun Zhao, Mingyue Xu, Jiawang Feng, Gudongze Li, Yongxuan Zhao, Xiaoyu Hao, Junshi Chen, Hong An","doi":"10.1088/1748-9326/ad71e2","DOIUrl":null,"url":null,"abstract":"In 2020 early summer, a historically severe rainy season struck East Asia, causing extensive damage to life and property. Subseasonal forecast of this event challenges the limits of rainy season predictability. Employing the integrated atmospheric model across scales and the Sunway supercomputer, we conducted ensemble one-month forecasts at global 3 km, variable 4–60 km, and global 60 km resolutions. The global convection-permitting forecast accurately captures the rainband, while other forecasts exhibited northward and weaker shifts due to the northward shifts of the atmospheric rivers over Japan, attributed to intensified Western North Pacific Subtropical High (WNPSH). Further, the double-ITCZ-like tropical rainfall pattern in Western Pacific in global convection-permitting forecast contributes to a more accurate WNPSH and rainband. In contrast, other forecasts show a single-ITCZ-like pattern in Western Pacific, leading to a northward-shifted WNPSH and rainband, advocating the importance of accurately representing tropical convections, as they can significantly affect mid-/high-latitude weather and climate.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"25 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad71e2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In 2020 early summer, a historically severe rainy season struck East Asia, causing extensive damage to life and property. Subseasonal forecast of this event challenges the limits of rainy season predictability. Employing the integrated atmospheric model across scales and the Sunway supercomputer, we conducted ensemble one-month forecasts at global 3 km, variable 4–60 km, and global 60 km resolutions. The global convection-permitting forecast accurately captures the rainband, while other forecasts exhibited northward and weaker shifts due to the northward shifts of the atmospheric rivers over Japan, attributed to intensified Western North Pacific Subtropical High (WNPSH). Further, the double-ITCZ-like tropical rainfall pattern in Western Pacific in global convection-permitting forecast contributes to a more accurate WNPSH and rainband. In contrast, other forecasts show a single-ITCZ-like pattern in Western Pacific, leading to a northward-shifted WNPSH and rainband, advocating the importance of accurately representing tropical convections, as they can significantly affect mid-/high-latitude weather and climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球对流许可模型改进了日本周边梅雨的次季节预报
2020 年初夏,东亚遭遇了历史上最严重的雨季,造成了巨大的生命和财产损失。对这一事件的次季节预测挑战了雨季可预测性的极限。利用跨尺度综合大气模式和 Sunway 超级计算机,我们在全球 3 千米、可变 4-60 千米和全球 60 千米分辨率下进行了为期一个月的集合预报。全球对流允许预报准确捕捉到了雨带,而其他预报则表现出向北和较弱的移动,这是由于日本上空的大气河流向北移动,这归因于西北太平洋副热带高压(WNPSH)的增强。此外,全球对流允许预报中西太平洋的双 ITCZ 热带降雨模式有助于更准确地预测 WNPSH 和雨带。与此相反,其他预报显示西太平洋的单ITCZ模式,导致WNPSH和雨带北移,这说明准确表示热带对流的重要性,因为它们会对中/高纬度天气和气候产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
期刊最新文献
Interactive effects between extreme temperatures and PM2.5 on cause-specific mortality in thirteen U.S. states. Health benefits of decarbonization and clean air policies in Beijing and China. Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications. Shifting power: data democracy in engineering solutions. Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1